

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE (NAAC Accredited)

(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

COURSE MATERIALS

MA 102 DIFFERENTIAL EQUATIONS

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in Engineering and Frontier Technology and to impart quality education to mould technically competent citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe discipline, culture and spiritually, and to mould them in to technological giants, dedicated research scientists and intellectual leaders of the country who can spread the beams of light and happiness among the poor and the underprivileged.

ABOUT DEPARTMENT

♦ Established in: 2002

♦ Course offered: B.Tech in Electronics and Communication Engineering

M.Tech in VLSI

♦ Approved by AICTE New Delhi and Accredited by NAACAffiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Providing Universal Communicative Electronics Engineers with corporate and social relevance towards sustainable developments through quality education.

DEPARTMENT MISSION

- 1) Imparting Quality education by providing excellent teaching, learning environment.
- 2) Transforming and adopting students in this knowledgeable era, where the electronic gadgets (things) are getting obsolete in short span.
- 3) To initiate multi-disciplinary activities to students at earliest and apply in their respective fields of interest later.
- 4) Promoting leading edge Research & Development through collaboration with academia & industry.

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates of Mechatronics Engineering will:

- **PEO1:** Graduates shall have the ability to work in multidisciplinary environment with good professional and commitment.
- **PEO2:** Graduates shall have the ability to solve the complex engineering problems by applying electrical, mechanical, electronics and computer knowledge and engage in lifelong learning in their profession.
- **PEO3:** Graduates shall have the ability to lead and contribute in a team entrusted with professional social and ethical responsibilities.
- **PEO4:** Graduates shall have ability to acquire scientific and engineering fundamentals necessary for higher studies and research.

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. **Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO 1: Design and develop Mechatronics systems to solve the complex engineering problem by integrating electronics, mechanical and control systems.

PSO 2: Apply the engineering knowledge to conduct investigations of complex engineering problem related to instrumentation, control, automation, robotics and provide solutions.

COURSE OUTCOMES

CO1	Solve the convergent test in mathematical series
CO2	Acquire the basic knowledge about three dimensional spaces and integral calculus of functions of more than one variables
CO3	Understand about partial derivatives and its applications
CO4	Solve problems in calculus of vector valued functions
CO5	. Apply multiple integrals to find area and volume
CO6	Evaluate surface and volume integrals

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	3	2	1			1	2		2
CO2	3	3	3	3	2	1			1	2		2
CO3	3	3	3	3	2	1			1	2		2
CO4	3	3	3	3	2	1			1	2		2
CO5	3	3	3	3	2	1			1	2		2
CO6	3	3	3	3	2	1			1	2		2

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

	PSO1	PSO2	PSO3
CO1	2	1	
CO2	2	1	
CO3	1	1	
CO4	1	1	
CO5	1	1	

CO6	1	1	

SYLLABUS

COURSE NO.	COURSE NAME	L-T-P-	YEAR OF
		CREDITS	INTRODUCTION
MA102	DIFFERENTIAL EQUATIONS	3-1-0-4	2015

COURSE OBJECTIVES

This course introduces basic ideas of differential equations, both ordinary and partial, which are widely used in the modelling and analysis of a wide range of physical phenomena and has got applications across all branches of engineering. The course also introduces Fourier series which is used by engineers to represent and analyse periodic functions in terms of their frequency components.

Syllabus

Homogeneous linear ordinary differential equation, non-homogeneous linear ordinary differential equations, Fourier series, partial differential equation, one dimensional wave equation, one dimensional heat equation.

EXPECTED OUTCOME

At the end of the course students will have acquired basic knowledge of differential equations and methods of solving them and their use in analysing typical mechanical or electrical systems. The included set of assignments will familiarise the students with the use of software packages for analysing systems modelled by differential equations.

TEXT BOOKS

- Erwin Kreyszig: Advanced Engineering Mathematics, 10th ed. Wiley
- A C Srivastava, P K Srivasthava, Engineering Mathematics Vol 2. PHI Learning Private Limited, New Delhi.

REFERENCES:

- Simmons: Differential Equation with Applications and its historical Notes,2e McGrawHill Education India 2002
- Datta, Mathematical Methods for Science and Engineering. CengageLearing, 1st. ed
- B. S. Grewal. Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- N. P. Bali, Manish Goyal. Engineering Mathematics, Lakshmy Publications
- D. W. Jordan, P Smith. Mathematical Techniques, Oxford University Press, 4th Edition.
- 6. C. Henry Edwards, David, E. Penney, Differential Equations and Boundary Value

QUESTION BANK

MODULE -I

- 1. Solve the ODE y''' + y = 0
- 2. Find the characteristic roots of the ODE y'' + 2y' + 5y = 0
- 3. State existence and uniqueness theorem of initial value problem(Picard's Theorem)
- 4. State existence and uniqueness of solutions
- 5. State Super position principle
- 6. Explain linear independence and dependence of solutions
- 7. Solve the ODE $y^{v} 3y^{iv} + 3y^{iii} y^{ii} = 0$
- 8. Find an ODE for which the functions e^x , e^{-x} , cosx, sinx form a basis of solutions
- 9. Check whether the functions (x + 1), (x + 2), x are linearly independent or not
- 10. If e^{-2x} , xe^{-2x} , x^2e^{-2x} forms a basis, then find the corresponding ODE
- 11. Solve $y'' + 9\pi^2 y = 0$
- 12. Solve 4y'' 20y' + 25y = 0
- 13. Find an ODE for the given basis $e^{\sqrt{3}x}$, $xe^{\sqrt{3}x}$
- 14. Verify by substitution that the given functions form a basis. Solve the given problem.

$$y^{''} + 2y^{'} + 2y = 0$$
, $e^{-x} \cos x$, $e^{-x} \sin x$ $y(0) = 1$,, $y^{'}(0) = -1$.

- 15. Solve xy'' + 2y' + xy = 0 if $y_1 = \frac{\cos x}{x}$ is a solution by reducing the differential equation into lower order?
- 16. Find a basis of solution of the ODE $(x^2 x)y'' xy' + y = 0$, given $y_1 = x$ is a solution?
- 17. Verify that $y=x^3$ is a solution of the ODE $x^2y'' 5xy' + 9y = 0$ and find the second solution by reducing it to lower order
- 18. Verify that $y=x^{-1}$ is a solution of the ODE $2x^2y'' + 3xy' y = 0$ and find the second solution by reducing it to lower order
- 19. Solve $(D^2 + 1)y = 0$ subject to $y(0) = 3, y'(0) = \frac{-1}{2}$
- 20. Solve y'' + 4y' + 5y = 0 with initial conditionsy (0)=2, y'(0) = -5.

MODULE II

1. Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x}$$
.

2. Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = x^2$$
.

3. Solve by method of variation of parameters
$$\frac{d^2y}{dx^2} + y = x\sin x$$

4. Solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$$
.

5. Solve
$$x^2 \frac{d^2y}{dx^2} - 2x \frac{dy}{dx} - 4y = x^2 + 2\log x$$
.

6. Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 3y = \sin 3x \sin 2x$$
.

7. Find the particular integral of
$$(D^2 + 4D + 1)y = e^x \sin 3x$$

8. Solve
$$(D^3 + 8)y = sinxcosx + e^{-2x}$$
.

9. Solve
$$y'' + y = tanx$$
 by the method of variation of parameters.

10. Solve
$$x^3 \frac{d^3y}{dx^3} - 2x^2 \frac{d^2y}{dx^2} + 2y = \frac{1}{x}$$
.

11. Solve
$$(D^2 + 2D - 3)y = e^x \cos x$$

12. Find the particular integral of
$$(D^2 - 2D + 1)y = xe^x$$

13. Solve by the method of variation of parameters
$$(D^2 + 4)y = tan 2x$$

14.Solve
$$(D + 1)^2 = x^2 e^x$$

15. Solve the differential equation
$$(x^3D^3 + 3x^2D^2 + xD + 1)y = x + logx$$

16. Solve the differential equation
$$(D^2 + 1)y = x^2e^x + sinx$$

17. Solve
$$(x+1)^2 y'' + (x+1)y' - y = 2 \sin \log(x+1)$$

18. Find the particular integral of
$$(D^4 - m^4)y = sinmx$$

19. Use variation of parameters to solve
$$y'' + y = secx$$

20. Solve
$$(D^2 - 2D + 5)y = e^{2x} \sin x$$

21. Solve
$$(x+1)^2 \frac{d^2y}{dx^2} + (x+1)\frac{dy}{dx} = (2x+3)(2x+4)$$

22. Solve
$$x^3 \frac{d^3 y}{dx^3} - 2x^2 \frac{d^2 y}{dx^2} + 2y = 10(x + \frac{1}{x})$$
.

23. Solve
$$y'' - 4y' + 5y = \frac{e^{2x}}{\sin x}$$
 by the method of variation of parameters.

24. Find the particular integral of $y''+y=\sin x$.

MODULE -III

Find the Fourier coefficient a_n for the function f(x) = 1 + |x| defined in -3 < x < 3

Find the Fourier series representation of $f(x) = x \sin x$ periodic with period 2π defined $-\pi < x < \pi$

Find the Fourier series expansion of $f(x) = e^{-x}$ in -c < x < c

Express f(x) = x as a Fourier series in the interval $-\pi < x < \pi$

Obtain the Fourier series for the function
$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} & -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi} & 0 \le x \le \pi \end{cases}$$

Obtain the Fourier series to represent the function $f(x) = |\sin x| - \pi < x < \pi$

Develop the Fourier series of $f(x) = x^2$ -2 < x < 2

Obtain the Fourier series for the function $f(x) = \begin{cases} x & 0 < x < 1 \\ 1 - x & 1 < x < 2 \end{cases}$

Develop the Fourier series of $f(x) = e^{-x}$ -l < x < c

Obtain the Fourier series for the function
$$f(x) = \begin{cases} -\frac{\pi}{4} & -\pi \le x \le 0 \\ \frac{\pi}{4} & 0 \le x \le \pi \end{cases}$$

Obtain the Fourier series for the function $f(x) = \begin{cases} -1 + x & -\pi \le x \le 0 \\ 1 + x & 0 \le x \le \pi \end{cases}$

Develop the Fourier sine series of f(x) = x in $0 < x < \pi$

Develop the Fourier cosine series of f(x) = cos x in $0 < x < \frac{\pi}{2}$

Develop the Fourier sine series of $f(x) = \begin{cases} x & 0 < x < 2 \\ 4 - x & 2 < x < 4 \end{cases}$

. Obtain the half range Fourier sine series for the function $f(x) = e^x$ 0 < x < 2

Find the half range cosine series for the function $f(x) = x^2$ $0 \le x \le \pi$

Find the half range cosine series for the function $f(x) = x(\pi - x)0 < x < \pi$

Find the half range cosine series for the function $f(x) = x \sin x$ $0 < x < \pi$

Find the half range cosine series for the function $f(x) = x^2$ $0 \le x \le c$

Find the half range cosine series for the function $f(x) = x \quad 0 \le x \le l$

Find the half range sine series for the function $f(x) = \begin{cases} x & 0 < x < 1 \\ 2 - x & 1 < x < 2 \end{cases}$

Find the Fourier series of the periodic function f(x) of period 4, where $f(x) = \begin{cases} 2 & -2 \le x \le 0 \\ 0 < x < 2 \end{cases}$

duce that (i) $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots = \frac{\pi^2}{8}$ (ii) $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots = \frac{\pi}{4}$

MODULE -IV

form the partial differential equation from z = xg(y) + yf(x)

Solve
$$(y-z)p + (x-y)q = (z-x)$$

solve the partial differential equation $(y^2 + z^2)p - xyq + xz = 0$

Form the partial differential equation by eliminating arbitrary function from $z = y^2 + 2f(\frac{1}{x} + \log y)$

$$\mathsf{lolve} p \sqrt{x} + q \sqrt{y} = \sqrt{z}$$

Form the partial differential equation by eliminating arbitrary function from $x^2 + y^2 + z^2 = f(xy)$ solve $y^2zp + x^2zq = xy^2$

- Solve $(y + zx)p (x + yz)q = x^2 y^2$
- Find the differential equation of all spheres of fixed radius having their centers in XY-plane
- a) Solve $(D^2 2DD' 15D'^2)z = 12xy$
- b) Find the particular integral of $(D^3 7DD^{'2} 6D^{'3})Z = sin(x + 2y) + e^{3x+y}$

a) Solve
$$\frac{\partial^3 Z}{\partial x^3} - 2 \frac{\partial^3 Z}{\partial x^2 \partial y} = 5e^{3x} - 7x^2 y$$

b) Solve
$$(x + y)zp + (x - y)zq = x^2 + y^2$$

a) Solve
$$\frac{\partial^3 Z}{\partial x^3} - 4 \frac{\partial^3 Z}{\partial x^2 \partial y} + 4 \frac{\partial^3 Z}{\partial x \partial y^2} = 2 \sin(3x + 2y)$$

b) Solve
$$\frac{\partial^2 Z}{\partial x^2} - \frac{\partial^2 Z}{\partial y^2} = \cos 2x \cos 3y$$

a) Form the partial differential equation by eliminating a,b,c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

b) Solve p d e Solve
$$\frac{\partial^2 Z}{\partial x^2} + \frac{\partial^2 Z}{\partial x \partial y} - \frac{\partial^2 Z}{\partial y^2} = e^{2x+y}$$

a) Solve
$$x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$$

b) Solve
$$\frac{\partial^3 Z}{\partial x^3} - 4 \frac{\partial^3 Z}{\partial x^2 \partial y} + 4 \frac{\partial^3 Z}{\partial x \partial y^2} = \cos(2x + y)$$

a) Solve
$$(D^2 - 2DD' + D'^2)z = e^{x+2y} + x^3$$

b)) Find the particular integral of Solve
$$\frac{\partial^3 Z}{\partial x^3} - 7 \frac{\partial^3 Z}{\partial x^2 \partial y} - 6 \frac{\partial^3 Z}{\partial y^3} = \sin(x + 2y)$$

a)Solve
$$(D^2 + DD' - 6D'^2)z = ysinx$$

b) Solve
$$(mz - ny)p + (nx - lz)q = (ly - mx)$$

MODULE -V

- 1. Write down the important assumptions when derive one dimensional wave equation
- 2. Solve $3u_x + 2u_y = 0$ with $u(x, 0) = 4e^{-x}$ by the method of separation of variables.
- 3. Solve one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ with boundary conditions u(0,t) = 0, u(l,t) = 0 for all t and initial conditions u(x,t) = f(x), $\frac{\partial u}{\partial t}\Big|_{t=0} = g(x)$
- 4.A string of length 20 cm fixed at both ends is displaced from its position of equilibrium, by each of its points an initial velocity given by $\begin{cases} x & 0 < x \leq 10 \\ 20 x & 10 \leq x \leq 20 \end{cases}$, x being the distance from one end. Determine the displacement at any subsequent time.
- 5. Solve one dimensional wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ using method of separation of variables when the separation constant k < 0
- 6. A tightly stretched string of length 'a' with fixed ends is initially in equilibrium position. Find the displacement u(x,t) of the string if it is vibrating by giving each of its points a velocity $v_0 \sin(\frac{\pi x}{a})$
- 7. A transversely vibrating string of length 'a' is stretched between two points A and B. The initial displacement of each point of the string is zero and the initial velocity at a distance x from A is kx(a-x). Find the form of string at any subsequent time.
- 8. State one dimensional wave equation with boundary conditions and initial conditions for solving it.
- 9. Using the method of separation of variables solve $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 3e^{-5x}$
- 10. A tightly stretched string of with fixed end points x=0 and x=l is initially in a position given by $y = y_0 sin^3 \left(\frac{\pi x}{l}\right)$. If it is released from rest find the displacement y(x,t).
- 11. A tightly stretched string of with fixed end points x=0 and x=l is initially at rest in equilibrium position. If it is vibrating by giving each of its points a velocity is λx (l-x), find the displacement of the string at any distance x from one end at any time t.
- 12. Solve $u_x + u_y = 0$ using method of seperation of variables.
- 13. A finite string of length L is fixed at both ends and is released from rest with a displacement f(x). What are the initial and boundary conditions involved in this problem.
- 14. A tightly stretched homogenous string of length 20cm with its fixed ends executes transverse vibrations. Motion starts with zero initial velocity by displacing the string into the form $f(x) = K(x^2 x^3)$. Find the deflection u(x,t) at any time t
- 15. Derive one dimensional wave equation.
- 16. Solve one dimensional wave equation by the method of separation of variables.

MODULE -VI

- 1.In heat equation $\frac{\partial u}{\partial t} = \propto^2 \frac{\partial^2 u}{\partial x^2}$ what does \propto^2 indicate. State the boundary conditions for solving it.
- 2. Find the steady state temperature distribution in a rod of length 25cm, if the ends of the rod are kept at $20^{\circ}c$ and $70^{\circ}c$.
- 3. A bar 10cm long with insulated sides has its ends A and B maintained at $30^{\circ}c$ and $100^{\circ}c$ respectively until steady state conditions prevail. The temperature at A is suddenly raised to $20^{\circ}c$ and at the same time that of B is lowered to $40^{\circ}c$. Find the temperature distribution in the bar at time t.
- 4. A rod of 30cm long with insulated sides has its ends A and B maintained at $30^{\circ}c$ and $90^{\circ}c$ respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to zero temperature and kept so. Find the temperature distribution u(x,y) taking x=0 at A.
- 5. Solve $\frac{\partial u}{\partial t} = h \frac{\partial^2 u}{\partial x^2}$ subject to the conditions u(0,t)=u(1,t)=0 for t>0 and $u(x,0) = 3\sin n\pi x$ 0 < x < 1
- 6. Find the steady state temperature distribution in a rod of length 20cm, if the ends of the rod are kept at $10^{\circ}c$ and $70^{\circ}c$.
- 7. Find the temperature in a laterally insulated bar of length L whose ends are kept at temperature zero if the initial temperature is $f(x) = \begin{cases} x & 0 < x < L/2 \\ L x & \frac{L}{2} < x < L \end{cases}$
- 8.A rod of length L has its ends A and B maintained at $0^{\circ}c$ and $100^{\circ}c$ respectively until steady state conditions prevail. If B is suddenly reduced to $0^{\circ}c$ and maintained at $0^{\circ}c$, then find the temperature in the rod at a distance x from A at time t.
- 9. Solve one dimensional heat equation when k>0
- 10. Write down all possible solutions of one dimensional heat equation.
- 11. Derive one dimensional heat equation
- 12. Find the steady state temperature distribution in a rod of length 30cm, if the ends of the rod are kept at $20^{\circ}c$ and $80^{\circ}c$.
- 13. Find the temperature in a laterally insulated bar of length 2cm whose ends are kept at temperature zero if the initial temperature is $f(x) = 100(2x x^2)$
- 14. A rod of length l with insulated sides has its ends A and B maintained at $30^{\circ}c$ and $90^{\circ}c$ respectively until steady state conditions prevail. The temperature at each end is then suddenly reduced to zero temperature and kept so find the temperature distribution at a distance x at time t.

Rolland Wednesday Module 1.

Homogeneous Equations. (Homogeneous Differential Equations.).

- Excistance and Uniqueness of solutions for initial value problems.
- · Homogeneous linear vaidinary differential equations of second order.
- . Homogeneous linear ordinary differential equations with constant coefficients, existance and -uniqueness of solutions.
 - · Wromskain, homogeneous linear ordinary differential equations with constant coefficient of higher order.

STRAINS IT IT OFFE Differential Equations.

An equation in which the differential everficients occurs is called a differential equation.

eg:

$$\frac{d^2y}{dx^2} + 9y = 0$$

$$0 \frac{\partial^2 u}{\partial x^2} + x \frac{\partial u}{\partial y} = 0$$

oridinary Differential Equations. (ODE)

Lapost deorsalive

A differential equation involving a single independent variable and hence only ordinary derivatives is called an oridnary differential equation. or An oridinary differential equation (ODE) is an equation that contains one or several derivatives

of an unknown function y(x). In the above set of four differential equations the equations a and a are ODE'S.

Note:

The @ and @ equations are partial differentia equations of PDE's

Order of a ordinary linear differential equation is the order of the highest derivative present in that equation.

The <u>Degree</u> of a oridinary linear differential equation is the degree of the highest derivative occurring in it, after the equation has been expressed in a form free from radicals and fraction

eg: 0 y' = cos x pegoee = 1 order =1,

@ y"+9y = e-0x (.S=E.F+p] (a=0) order=a, Degree=1 · If Womageroun, (as= a) ely:

C.S=C. F + (jump ly mirlar And gr, com 3 y'. y"- 3 (y')2 = pegree = 1 / degree of the order = 3 highest derivative

Linear Differential Equations (LDE)

A LDE is a differential equation in which the dependent variable and its desirative occur only in first degree and not multiplied together ie, the

obifferential equations which do not contains products, powers or coeff quotients of unknown functions and its derivatives.

Intial Value Problem.

An ode, together with an initial condition is called an initial value problem. If the ode is explicit (directly we can read), y' = f(x,y), the initial value problem is of the form, y' = f(x,y), $y(x_0) = y_0$.

allelie General Form of an nth order linear, ordinary differential equation. The the general form of an nth order, linear ope is of the following form

$$\frac{a_{n}}{dx^{n}} + a_{1} \frac{d^{n-1}y}{dx^{n-1}} + a_{2} \frac{d^{n-2}y}{dx^{n-2}} + \dots + a_{n} y = g(x),$$

$$a_{0} \neq 0$$

The D.E is said to be homogeneous, if g(x) = 0 and non-homogeneous, if $g(x) \neq 0$ not identically zero. $(g(x) \neq 0)$ Denoting $\frac{d^ny}{dx^n} = D^ny$ ie in the operator $\frac{d}{dx}$

i'e, 'D' stands for the operator $\frac{d}{dx}$.

ie, $\frac{dy}{dx} = \frac{d}{dx}(y)$. $= D\dot{y}.$

Similarly, $\frac{d^2y}{dx^2} = \frac{d^2(y)}{dx^2} = \frac{d}{dx} \cdot \frac{d}{dx} (y)$ $= D \cdot D(y)$

Thun the given equation $\frac{D^2y}{can}$ be rearranged in the form

 $D^{n}y + a_{n}D^{n-1}y + a_{n}D^{n-2}y + \cdots + a_{n}y = g(x)$ $[D^{n}y + D^{n-1}y + D^{n-2} + \cdots + a_{n}]y = g(x) \rightarrow Simolization (SF)$ F(D)y = g(x) - 2

Solution

The solution of DE is a function, y(x) that satisfier the DE

The general solution of @ is of the form

y = The complementary function (EF) + Particular

(non-howegues) integral (P.I)

thome generous y = C.F.

The tollowing the types of solution.

O General solution. The solution containing architary constants, an which the number of arbitrary constants is equal to the order of the differential equation is called the general solution or complete solution of the di D.E.

@ particular solution. This is a solution obtained by from the general solution by assigning particular valuest the arbitaly constants.

3) singular Solutions. Any other solution is called singular solution cie, the solution does not contain any arbitaly constants is called singular solutions)

Note: the given D.E. may or may not have a singular solution. Since, $D = \frac{d}{dx}$ stands for the differentiation of x and $D^{-1} = \frac{1}{x}$ stands too integration with suspect to x.

Homogeneous Linear Ordinary Differential Equation In the above equation down, if g(x)=0 then the new equation F(D) y = 0 15

called the homogeneous linear oxdinaty

differential equation.

Higher Order Homogeneous Lineas LODE's with ranstant coefficients

form, $\frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_n y = 0$ 8 teps for solving.

D Wrife the symbolic form of the given equation:
i'e by,
i'e, by replacing the differentials by operators.
i'e, by replacing the differentials by operators. $D^n y + a_1 D^{n-1} y + a_2 D^{n-2} y - \dots + a_n y = 0$.

[$D^n ta D^{n-1} + a_2 D^{n-2} + \dots + a_n] y = 0 \rightarrow i$'s called the symbolic form (S.F)

@ write the auxilloxy equation and solve it.

The auxillary equation can be found by replace.

Dy by \(\lambda \) in the above equation.

cie, $\lambda^n + a_i \lambda^{n-1} + a_2 \lambda^{n-2} + \cdots + a_n = 0$, is called the Auxillary Equation (A·E)

Now we are going to solve the A·E for λ^i and depending upon the nature of the Roots we can write the complementary function (C·F)

(3) worte solution as following

a) since, the A-E is a polynomial of degree in in λ , it will have in woods say $k_1, k_2, k_3 \cdots k_n$

If the roots $\lambda_1, \lambda_2 \cdots \lambda_n$ are ocal and distinct, then the CF in

is, y = c,e 1 12 e2x + c3 e x - - + cne I's all the goots are real, but two of them are equal say 1,=12 = \lambda, \tanka...\x when the CF-, ie y = (1+cz x) 2+ ge+ Case 3 from are equal say $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_1 \lambda_4 \lambda_5 - \lambda_1$ then the CF, ie, yc ie, y= (c,+c2x+c3x2) e+ c4e+...+ cne If the A.E. has complex roots say atip Mon repeated. Then the C.F. i'e, y'c i'e y = e (C, cospa+ & Sin Bx) If the complex roots atip, is repeated two time, there the C.F. ie, ye ie, y = exx [(c,+c2x) cospx +(c3+c4x) sinpx] If the complex roots repeating thricely. C.F or y or y = ex[(c1+c2x+c3x) cospx+ (4+6x+6x)

The above obtained three 200ts are real and distinct.

The complete solution (c.s), ie
$$y = c_1 e^{x} + c_2 e^{-x} + c_3 e^{2x}.$$

$$y = c_1 e^{x} + c_2 e^{-x} + c_3 e^{2x}.$$

a)
$$g^{(3)} + y' - \log = 0$$
.

ans:
$$\frac{d^3y}{dx^3} + \frac{dy}{dx} - \log = 0$$

The S.F,
$$D^3y + Dy - 10y = 0$$

 $[D^3 + D - 10]y = 0$

the A-E,
$$\lambda^3 + \lambda - 10 = 0$$

$$\lambda = 0$$
, $f(0) = -10 \neq 0$

$$\lambda = 1$$
, $f(0) = 1+1-10$
= -8 ± 0

$$x=2$$
 $f(2) = 23+2-10$

$$\lambda = 2$$
, $f(2) = 23 + 2 - 10$
= $8 + 2 - 10 = 0$

$$\lambda = 2$$
 is a root (1-2) is a factor.

$$\lambda = 0,0,0,\frac{1}{3} \cdot \frac{1}{3}$$

(. F or $y_c = y = (c_1 + c_2x + c_3x^2) \cdot R + (c_4 + c_5x) \cdot R + (c_4 + c_5x) \cdot R + (c_4 + c_5x) \cdot R + (c_5x) \cdot R +$

(6)
$$\frac{d^3y}{dx^3} - 9 \frac{d^2y}{dx^2} + 23 \frac{dy}{dx} - 15y = 0$$

(7) $\frac{d^4y}{dx^4} - 5 \frac{d^2y}{dx^2} + 4y = 0$

 $\frac{d^3y}{dx^3} - 13\frac{dy}{dx} + 12y = 0$

Ans:
$$y''' + qy' = 0$$

$$\frac{d^{3}y}{dx^{3}} + q \frac{dy}{dx} = 0$$

$$8 \cdot F \Rightarrow (D^{3} + q D)y = 0$$

$$\lambda^{2} + q \Rightarrow \lambda^{3} + q\lambda = 0$$

$$\lambda^{2} + q \Rightarrow \lambda^{3} + q\lambda \Rightarrow 0$$

$$\lambda^{2} + q \Rightarrow 0$$

$$\lambda^{2} + q \Rightarrow 0$$

$$\lambda^{2} + q \Rightarrow \lambda \Rightarrow 0$$

$$\lambda^{2} + q \Rightarrow \lambda \Rightarrow 0$$

$$\lambda^{2} = -q \Rightarrow \lambda \Rightarrow \lambda \Rightarrow 0$$

$$\lambda^{2} = -q \Rightarrow \lambda \Rightarrow \lambda \Rightarrow 0$$

$$\lambda^{3} = 0$$

$$\lambda^{2} = 0$$

$$\lambda^{2} = 0$$

$$\lambda^{3} + q\lambda \Rightarrow 0$$

$$\lambda^{3} = 0$$

$$\lambda^{4} + q\lambda \Rightarrow 0$$

$$\lambda^{2} + q\lambda \Rightarrow 0$$

$$\lambda^{4} + q\lambda \Rightarrow 0$$

$$\lambda^{2} + q\lambda \Rightarrow$$

$$\lambda^{2} + 16 = 0 \Rightarrow \lambda = \int_{-16}^{16} \lambda^{2} = -16$$

$$\lambda = \int_{-16}^{16} = 4 \int_{-1}^{16} \lambda^{2} + 16 = 4 \int_{-16}^{16} \lambda^{2} + 4 \int_{-16}^{16} \lambda^{$$

6)
$$\frac{d^{3}y}{dx^{3}} - 9\frac{d^{2}g}{dx^{2}} + \omega^{3}\frac{dy}{dx} \neq rsg = 0$$

 $s \neq b$
 $(p^{3} - 9p^{2} + 23p - 15)y = 0$
 $(p^{3} - 9x^{2} + 23x - 15 = 0)$
 $\lambda = 0$, $f(0) = -15 \neq 0$
 $\lambda = 1$ $f(1) = 0$, $\lambda = 1$ is a root.

$$\lambda = 8 \pm \sqrt{(5)^{2} - 4 \times 1 \times 15} = 8 \pm \sqrt{64 - 60}$$

$$= 8 \pm \sqrt{4}$$

7)
$$\frac{d^{4}y}{dx^{4}} - 5\frac{d^{2}y}{dx^{1}} + 4y^{20}$$

S: F)

(D⁴ - 5D² + 4) $y = 0$
 $\lambda = 0$, $f(0) \neq 0$
 $\lambda = 1$, $f(0) = 0$
 $\lambda = 1$, $f(0) = 0$
 $\lambda = 1$, $\lambda = 1$ is a xoot

 $\lambda = 1$, $\lambda = 1$ is a xoot

 $\lambda = 0$, $\lambda = 1$, $\lambda = 1$, is a xoot

 $\lambda = 0$, $\lambda = 0$
 $\lambda = 0$, $\lambda = 0$, $\lambda = 0$, $\lambda = 0$
 $\lambda = 0$, $\lambda = 0$, $\lambda = 0$
 $\lambda = 0$

8)
$$\frac{d^{3}y}{dx^{3}} - 18 \frac{dy}{dx} + 18y = 0$$

SEP $(p^{3} - 13p + 12)y = 0$

A.E. $\Rightarrow \lambda_{1} = \lambda_{2} + 13x + 12 = 0$
 $\lambda_{2} = 0$
 $\lambda_{1} = 0$
 $\lambda_{2} = 0$
 $\lambda_{3} = 0$
 $\lambda_{1} = 0$
 $\lambda_{1} = 0$
 $\lambda_{2} = 0$
 $\lambda_{3} = 0$
 $\lambda_{1} = 0$
 $\lambda_{2} = 0$
 $\lambda_{3} = 0$
 $\lambda_{4} = 0$
 $\lambda_{1} = 0$
 $\lambda_{2} = 0$
 $\lambda_{3} = 0$
 $\lambda_{4} = 0$
 $\lambda_{4} = 0$
 $\lambda_{5} = 0$
 λ

$$y^{10} = 0$$

1

ex

ar

$$\frac{d^3y}{dx^3} - 2 \frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = 0$$

$$(D^3 y - 2D^2 - D + 2)y = 0$$

$$A \cdot E \Rightarrow \lambda^{3} - 2\lambda^{2} - \lambda + 2 = 0$$
 $f(\lambda) = \lambda^{3} - 2\lambda^{2} - \lambda + 2$
 $\lambda = 0$
 $f(0) = 2 \neq 0$
 $\lambda = 1$
 $f(1) = 1 - 2 - 1 + 2 \Rightarrow = 0$
 $\lambda = 1$
 $is 900t$

$$\lambda = \Rightarrow \left[\pm \int_{1^2 - 4 \times 1 \times -2}^{2^2 - 4 \times 1 \times -2} \right]$$

$$= \frac{1 \pm \sqrt{1 + \varepsilon}}{2} = \frac{1 \pm 3}{2} = \frac{1 + 3}{2} = \frac{1 + 3}{2}$$

The cory ory =
$$C_1 e^{2x} + C_3 e^{-x}$$
.

i'e The complete solution (C.S) or general solution e.s=C.F (homogeneous) y= (1ex + c2 ex + 3e-x. 11) 801 ve, g"-y"-100y'-100y =0. with the and initial condition, y(0) = 4, y'(0) = 11, y'(0) = 299 ane: $\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{100}{dx} - \frac{dy}{dx} - 100 y = 0$ $SF \rightarrow (D^3 - D^2 + 100 D - 100) y = 0$ $A \cdot E / \lambda^3 - \lambda^2 + 100 \lambda - 100 = 0$ λ=0 , f(b) =100 ±0 $\lambda = 1$ $f(1) = 1 - 1 + 100 - 100 \neq 0 = 0$ 1-(1) = 4 = 1+ 100 = 120 X=1 is === 1 0 100 0 X + ip λ2 + 100 =0 A = ± 5100 = 105+1 = ±101 B-10 x = 1 , ±10 i oryony = c, ex + e, e° [ca cos lox + cysin lox] c. soy= c, ex + c2 cos lox + c35in lox.

• (8)
$$y = C_1 e^4 + C_2 \cos 10x + C_3 \sin 10x$$

• $y(0) = 4$

• $y(0) = 4$

• $y(0) = 6$

• $y(0) = 1$

• $y'(0) = 11$

• $y' = C_1 e^4 - C_2 \sin 10x \sin 0 + C_3 \cos 10x \cos 0$

• $y'(0) = 11$

• $y' = C_1 e^4 - C_2 \sin 10x \sin 0 + C_3 \cos 10x \cos 0$

• $y'(0) = C_1 + 10 C_2 = C_2 \cos 10x \cos 0$

• $y''(0) = C_1 + 10 C_2 = C_2 \cos 10x \cos 0$

• $y''(0) = -899$

• $y''(0) = -899$

• $y''(0) = C_1 e^{x} - 100 C_2 \cos 10x \cos 0$

• $y''(0) = C_1 e^{x} - 100 C_2 \cos 10x \cos 0$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 100 C_2 = -299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 299$

• $y''(0) = C_1 - 100 C_2 = C_1 - 299$

• $y''(0) = C_1 - 29$

Particular soulution,
$$y_p$$
 ie,

 $y = e^{x} + 3 \cos x + \sin x$

I can the limital value problem

(3) Solve the initial value problem,
$$y^{(3)} + 3y'' - 10y' = 0, \quad y(0) = 7, \quad y'(0) = 0, \quad y'(0) = 70$$
an: $5/7 \Rightarrow (0)^3 + 0.5^2 + 0.$

an:
$$S'F \Rightarrow (D^3 + 3D^2 - 10D)y = 10$$

$$A \cdot E \Rightarrow \lambda^3 + 3\lambda^2 - 10\lambda = 0$$

 $\lambda (\lambda^2 - 3\lambda - 10) = 0$

$$\lambda = 0$$
, $f(0) = 0$.

$$\lambda^2 + 3\lambda - 10 = 0$$

$$\lambda = -3 \pm \sqrt{3^2 - 4 \times 1 \times -10}$$

$$2 \times 1$$

$$= -3 \pm \sqrt{9+40} = -3 \pm 3$$

$$=\frac{-3+7}{2}$$
 or $-\frac{3-7}{2}$

$$\lambda = 0$$
, $a = -5$, a .

$$= c_1 e^{0x} + c_2 e^{-5x} + c_3 e^{2x}$$

$$c_3 - r_3$$

$$u = c_1 + c_3 e^{-5x} + c_3 e^{2x}$$

$$y = c_1 + c_2 e^{-5x} + c_2 e^{2x}$$

$$y = c_{1} + c_{2} e^{-52} + c_{3} e^{4x}$$

$$y(0) = 7$$

$$y(0) = 7$$

$$y(0) = c_{1} + c_{2} + c_{3} = 3 \quad c_{1} + c_{2} + c_{3} = 7$$

$$y'(0) = 0$$

$$y''(0) = 0$$

$$0 + c_{2} + c_{3} = 0$$

$$0 + c_{3} + c_{4} + c_{3} = 0$$

$$0 + c_{4} + c_{5} + c_{4} + c_{5} = 0$$

$$0 + c_{5} + c_{2} + c_{5} + c_{$$

The particular solution up ie, $y = a e^{-5x} + 5 e^{ax}$.

Yhing. Solve Initial Value problem, y''' + 3y'' + 4.81y' = 0. y(0) = 6, y'(0) = -3.15, y''(0) = -12.195 $y = \frac{3}{4} + \frac{9}{4} e^{-3/2x} \sin \frac{6x}{3} + \frac{1}{4} e^{-3/2} \cos \frac{6x}{3} + \frac{1}{4} e^{-3/2x} \sin \frac{6x}{3$

Serond order knormageneous linear vodenasy Differential equation.

an ... 4 : 40 - 11 + 50 - 11/2 COSSX

The standard form of the second order homogeneous linear order differential equation is y'' + p(x)y' + q(x)y = 0

Fundamental theorem of homogeneous linear differential equation of second order.

· For a homogeneous LODE,

411(0)

y'' + c(x)y' + q(x)y = 0, any linear combination of two solutions on an open interval I' is again a solution of that equation. In particular, for such an equation the sums and constant multiples of solutions are again solutions.

Note:
Thus if $y = c_1 y_1 + c_2 y_2$ is also a solution where y_1 and y_2 are solutions and c_1 , c_2 are

arbitary constants.

Initial value problem (second order)

The initial value problem of second order is of the following form, y'' + p(x)y' + q(x)y = 0, $y(x_0) = y_0$ and $y'(x_0) = y_1$, two initial to conditions for second order.

Note:
Two functions y, and y, define on an intervel: 1;
are said to be linearly dependent, if one is;

constant multiple of other ie, two functions y, and y2 are called linearly and

dependent on I' if, $K_1Y_1 + K_2Y_2 = 0$, wholes

for some k, and ke not both zero.

Ofherwise they are said to be linearly independent ie, the two functions y_1 and y_2 are called lenearly independent on an intervel is if $K_1, y_1 + K_2, y_2 = 0$, porovided K_1 and K_2 are both here

then if, $K_1 \neq 0$, and $K_2 \neq 0$, we can see that y_1 and y_2 are proportional. Consider $K_1 y_1 + K_2 y_2 = 0$, when $y_1 = K_2 y_2$ and $y_2 = -K_1 y_1$ $(K_1 \neq 0, K_2 \neq 0)$

A general solution of an ODE,

y'' + c(x)y' + q(x)y' = 0, on an open interest, i.e., $y = c_1y_1 + c_2y_2$ in which y_1 and y_2 are the solutions of the above equation on x'. That are not proportional, c_1 and c_2

are arbitary constants. These y, y are called a Basios. (or Fundamental theorem) of the solution of the above homogeneous linear second order equation. A particular solution of the above equation on i, is obtained by assigning specific values c, and ca in, $y = C_1 y_1 + C_2 y_2$ (General solution)

1) solve the Initial value problem, 9"+y=0 when y(0) = 3, y'(0) = -0.5.

eurs: $SF \Rightarrow (DA + 1B)y = 0$

A·E -> Xa+&1=0.

 $\lambda^2 + 1 = 0$

 $\lambda = \pm i$

d±iB. d=0, B=1

 $\lambda = 0 + i$

C.F is * e ° (c, cos x + c2 Srn x) y, 00 y= STE

C.S = C, COSX + C2 Sin X.

x = 0

40)=01

y(0) = 3

y= C1 cosx+C2Sinx, y'=-C15inx+C2(08x.

y'(0) = Ca.

4107 = -0.5.

.. C2 = -0.5

```
.. The particular solution,
                      4p zie 4 = 3 cosx - 0.5 sinx.
     Varify that, y_i = e^x, y_2 = e^x are the solutions * the ode, y_i = y_2 = 0, then solve the initial *
     value problem y"-y=0, provided y (0)=6 y(0)=.
ans:- Let, y_1^* = e^{x}. y_2 = e^{-x}
                                                                                                                     42 + 42 = 0
                                                        y2 =-e =x
                 y = e x
                                                               y_2'' = e^{-\infty}
              y_2 - y_1 = y_2 = 0
y_2 - y_2 = 0
y_2 - y_2 = 0
y_2 - y_2 = 0
              e^{x} - e^{x} = 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 0
= 
             of the given ODE, y"-y=0 -@
                         (Fundmental theorem)
                                     \frac{y_a}{y_a} = \frac{e^x}{e^{-x}} = e^{-2x} \neq constant.
           Now
           then teem the fundamental theorem
          the General Solution (G.S) of the the given
          differential equation is, y = c_1 y_1 + c_2 y_2
             ie, y=c,ex+c2e-x-@
            y' = c_1 e^{x} - c_2 e^{-x}
 substitute = of and of in en
            y"-y'=0=> c,ex+czex-c,ex-cze-x=0
```

$$y: C_1e^{x} + C_2e^{x}$$
 $y'(0) = 6$
 $y'(0) = -2$
 $y'($

1) Find a Basi's of the solutions of the important 0.E, $(x^2-x)y''-xy'+y=0$

By inspection; $y_1'=4$, $y_1''=6$. $(x_1^2 - x)y_1'' - xy' + y'' = 0$ $(x^2-x) \times 0 - x \times 1 + x = 0$ (basis) is a solution : $y_1 = x$ is a solution of the given P.E By inspection yours Now, we are going to find , (second basis) $V = \int e^{\int p dx} dx$ for that we are companing the given equaling 6c2-x) " - xy + xy = 0 with standard equal y''' - p(x)y' + q(x)y = 0comparing the above a equations are get P=-x Then, Rearraning the given equating by devoiding through x2-x $\frac{\chi}{\chi^2 - \chi} = \frac{-\kappa}{\sqrt{\chi}}$ $(x^2-x)y^0-xy!+y=0$ $y'' - \frac{x}{x^2 - x} y' + \frac{y}{x^2 - x} = 0$ comparing this equality a with the Standard and y'' + - p(x)y' + q(x)y = 0we get p = -1 $\mathscr{F} \int P \, dx = \int \frac{1}{x-1} \, dx.$ = - Stand 20

 $= - \log(x - i)$

$$e^{-\int pdx} = e^{\int g(x-1)}$$

$$= \frac{x-1}{x^2}$$

$$= \int \frac{x}{x^2} - \frac{1}{x^2} dx$$

$$= \int \frac{1}{x} - \frac{1}{x^2} dx$$

$$= \int \frac{1}{x} dx = \int x^{-2} dx$$

$$= \int \frac{1}{x} dx = \int x^{-2} dx$$

$$= \log |x| - \left|\frac{x^{-1}}{x}\right|$$

$$= \log |x| + \frac{1}{2x} + C$$

$$= \log |x| + \frac{1}{2x} + C$$

$$= \ln \log x + \frac{1}{x} + C$$

$$= \ln \log x + C$$

$$= \ln \log$$

$$9'' + p(x)g' = q(x)g = 0$$

$$P = -1$$

$$\int p dx = \int -dx = -x$$

$$e^{\int -p dx} = e^{x}$$

$$V = \int \frac{e^{x}}{e^{x}xe^{x}} = \int \frac{1}{e^{x}} dx$$

$$= \int e^{-x} dx = -e^{-x}$$

$$y_{2} = \sqrt{y},$$

$$y_{2} = -e^{-x} \times e^{x} = -e^{x-x} = -e^{x-x} = -1$$

$$y_{3} = -e^{-x} \times e^{x} = -e^{x-x} = -e^{x-x} = -1$$

$$y_{4} = -e^{x} \times e^{x} = -e^{x} = -1$$

The basis of the given ope are $y_1 = e^{x}$, $y_2 = -1$

Second Order Homogeneou Linear Oxidinary

Differential Equation with constant coefficients.

The Second Standard form of the second order

ordinary linear differential equation with

constant coefficient is y"+ ay'+ by = o

where a and b are arbitary constants

① Solve the ODE y''-y=0 art: the SF is \Rightarrow $(0^{a}-1)y=0$

$$A \cdot E \Rightarrow \lambda^2 - 1 = 0$$
 $\lambda = \pm 1$ $1 \cdot y \cdot \lambda = 1, -1$

Tr

a

<u>ئ</u> ق

any;

A

A

Tutor

4

ans

```
The CF ie y ie
      y = c_1 e^{\alpha} + c_2 e^{-\alpha}
    a.s , y = c, e 2 + cze-x
 @ solve the ODE, y"- 0.25 y =0
 any: (p^2 - 0.25)y = 0
   A.E = 12-0.25 = 0
            x2 = 0.35 メ= 10.08 => メキロ.5
      λ =0.5 ps i& 900ts.
   the cif is, yo ie,
     y = c_1 e^{0.5x} + c_2 e^{-0.5x}
   The u \cdot s i s,

y = c_1 e^{-0.5x} + c_2 e^{-0.5x}
Tutuniala
( 1 solve the ODE ( y"+ 6y'+9y = 0
  6 9y" - 30y + 25y =0
  6 4y'' - 4y' - 3y = 0
 a) 9"+1.75y1-0.5 y=0
aru: s.F > (D2+ 1.75 D -0.5) y=0
    AE> 12 + いす52 -0.5=0
    1 = -1.75 ± \( (1.75)^2 - 4x1x -0.5
      = -1.75 ± 5.0625 = -1.75 +5.0625 08-1.75 + 5.062
```

9 = C1e"+ x C2e" (NS) y= Extragret y = y(x)y(0) = C, = 4.5 -0 y' = -C, #x (xx - C2 e x + C2 e x 1) (exercise.) 41 = -#C1e-TX - TT & C2e-TTX + C2e-TTX y'(0)= -TC, + C2 => -TC, +C2 = 13.137 =) $C_7 - \Pi C_1 = 13.137 - 2$ C2-TTC1=13.137. = 3.14×105 Cz = 13.137+11C, (2 = 13 137 + TX4.5 C2-TTC, = 13.137 C2 - \$ 4.5 TT = -4.5 TT -1 C2 = -4.5 TT + 4.5 TT -1 $c_2 = -1$ the Initial value problem y " + y ' - 2y = 0. where y 0) = 4, y'(0) = -5

ans:
$$SF \Rightarrow (D^2 + D - 2) y = 0$$

$$AF \Rightarrow \lambda^2 + \lambda - 2 = 0$$

$$\lambda = -\frac{1 \pm \sqrt{1^2 - 4 \times 1 - 2}}{2 \times 1}$$

$$= -\frac{1 \pm \sqrt{1 + 8}}{2} = -\frac{1 + 3}{2} \text{ or } -\frac{1 - 3}{2}$$

$$= \frac{9}{2} \text{ for } -\frac{4}{2}$$

$$xoots and$$

$$\lambda = -1, -2.$$

 $C \cdot F \cdot i^e$, $y_c \cdot i^e y = c_1 e^{x} + c_2 e^{-2x}$ $4 = \epsilon_1$ $6 \cdot S = c_1 e^{x} + c_2 e^{-2x}$ $y(x) = c_1 e^{x} + c_2 e^{-x}$

y(0) = 4. y(0) = 4. $y(0) = e_1 + c_2$ $\Rightarrow c_1 + c_2 = 4$ $y'(0) = c_1 - 2c_2$ $\Rightarrow c_1 - 2c_2 = -5$

 $C_1 + C_2 = 4 \implies C_2 = 4 \implies C_1 = 4 \implies C_1 = 4 \implies C_1 = 4 \implies C_1 = 4 \implies C_2 = 4 \implies C_1 = 4 \implies C_2 = 4 \implies C_1 = 4 \implies C_2 = 4 \implies C_3 = 4 \implies C_2 = 4 \implies C_3 = 4 \implies C_2 = 4 \implies C_3 = 4 \implies C_4 = 4 \implies C_4 = 4 \implies C_5 = 4 \implies C_6 = 4 \implies C_7 = 4 \implies C_8 = 4$

particular solution, 4p ie y= 5e-x + a x e-x

(8) g4 - 9y2 - 400 y = 0 y(0) = 0, y'(0) = 0, y''(0) = 41, y'''(0) = 0(and: $\cos b \le x - \cos 4x$)

Higher order Homogeneous LODE.

Continue:

$$50. (D^{4} + 10D^{2} + 91)y = 0$$

$$3F \Rightarrow (D^{4} + 10D^{2} + 9)y = 0$$

$$BE \Rightarrow \lambda^{4} + 10\lambda^{2} + 9 = 0$$

$$\beta u + \lambda^{2} = K$$

$$K^{2} + 10K + 9 = 0$$

$$K^{2} + 10K + 9 = 0$$

$$A = -10 + \sqrt{10^{2} - 4x}$$

$$= -10 \pm \sqrt{\frac{64}{2}}$$

$$= -10 \pm 8$$

 $\lambda^2 = -9 \Rightarrow \lambda = \sqrt{9} = 12 \pm 3i$: the roots are, ±1 and ±3; (a=0,8=1

The CP i'll ye i'e y= e x [(, cosx + (259nx) + e x [(3 cos3x + (4 sin3x) :4= 4 COSX + C2 SINX + C3 GOS 3x + C4 Sin 3x

9)
$$y^{2} - 5y''' + 4y' = 0$$
 $SF \Rightarrow (D^{4} - 5D^{3} + 4D)y = 0$
 $AE \Rightarrow A^{4} - 5A^{3} + 4A = 0$
 $A(A^{3} - 5A^{2} + 4) = 0$
 $A = 0$
 A

```
Toldiolisans: 1 DDE's Second Order Homogeneous LODE's Ceo
                                          Continue
    (3)@ y"+6y"+9y=0
 ( as SF = ) (D^2 + 6D + 9)y = 0
        AES 22+61+9=0
HW
           \lambda = -6 \pm \sqrt{6^2 - 4 \times 1 \times 9}
             = -6 \pm 36 - 36 = -6 = -6 = 2
        CF QUE ycie y= (c,+c2x) e-3x.
           4.5 ie 9 = (C, f (2 x) e -3x
    B 99"-30y'+25y=0 +
   an. gF = (90^2 - 300 + 25) y = 0
       AF => 9x2-30 x +25 =0
           1 = 30 ± J(30) - 4 × 9×25
                    289
            = 30 ± 1900 - 900
            \frac{30f}{68} = \frac{5}{3} & 5
    \lambda = \frac{5}{3}, \frac{5}{3}

(F ie y_c ie y_= (c_1 + c_2 x) e^{5/3x}
        45 1'e 92 (C+C, x) 5/8x
```

 $x^2y'' + xy' - 4y = 0$

户二文

10) Solve the initial value problem y" + y' + 0. asy = 0 y(0) = 3.04, y'(0) = -3.5

ani: $SF \Rightarrow (D^2 + D + 0.25)y = 0$ A.E - 1 12+ 1+0:25 =0 1 = -1 ± 112-4 x 1 x 0. 25 111 $= -1 \pm \sqrt{1-1} = -1 \pm \frac{1}{2} = -\frac{1}{2}$ $\lambda = -\frac{1}{2} - \frac{1}{2}$ the cf, i', y i'e 4= (c, e+c2x) e-42x y(0)=3.0 $y = (c_1 + (c_2 x)) e^{-y_2 x}$ $y = (c_1 + (c_2 x)) e^{-y_2 x}$ $y = (x) = c_1 e^{-y_2 x}$ $y = (x) = c_1 e^{-y_2 x}$ $y = (x) = c_1 e^{-y_2 x}$ $y = c_1 e^{-y_2 x}$ $y = c_1 e^{-y_2 x}$ $y = c_1 e^{-y_2 x}$ y'(0) = -3.5 $y = c_1 e^{-\frac{y_2}{2}x} + c_2(x e^{-\frac{y_2}{2}x})$ $y'(x) = -\frac{1}{2} e_1 e^{-\frac{y_2 x}{2}} + c_2 (x \cdot \frac{1}{2} e^{-\frac{y_2 x}{2}} + e^{-\frac{y_2 x}{2}})$ y'(x) = -1 (+ e - 1/2 x = -1/2 Cz xe + ce y'(0)= -12 C, + @ -42 00 C3 -1 c, + c, z -2-5=

Substitute (D in D =)
$$-\frac{1}{2} \times 3 + C_2 = -3.5$$

$$-\frac{3}{2} + C_2 = -3.5$$

$$C_2 = -3.5 + \frac{3}{2}$$

$$= -3.5 \times 1 + 3$$

$$= -\frac{7}{2} = -\frac{4}{2} = -\frac{9}{2}$$
The particular solution, in ypie
$$y = (3 + 2 + 2) e^{-\frac{1}{2}x}$$

$$y = 3 e^{-\frac{1}{2}x^2} - 2x e^{-\frac{1}{2}x}$$

$$y''' + 0.4 y' + 9.04 y = 0, y(0) = 0 & y''(0) = 3.$$
and:
$$5 = \Rightarrow (D^2 + 0.4 D + 9.04) y = 0$$

$$A = \Rightarrow \lambda^2 + 0.4 \lambda + 9.04 = 0$$

$$\lambda = -0.4 + \frac{1}{2} \cdot \frac{$$

 $9 = c_1 e^{-0.2 \times} cos 3x + c_2 e^{-0.2 \times} sin 3x$ y'(ox) = c, (e -0.2x x 3x-SIN3x+ COS 3xx x e -0.2x)+ : y (2 (e x 3x (053x + Sin3xx =0.2x e 2) Di. $9'(x) = -3C_1 e^{-0.2x} \sin 3x - 0.2 C_1 e^{-0.2x} \cos 3x +$ 4 3 C2 e C05 3x - 0; 2 C2 e Sin3x 4 $y'(0) = -0.2 c_1 + 3c_2$ Ļ y'(0) = 3 => $-0.2 \, C_1 + 3 \, C_2 = 3 - 0$ $||\hat{0}|| ||\hat{b}|| \Rightarrow -0.2 \times 0 + 3 \cdot (2 = 3)$ \Rightarrow 3 C2 = 3 => C2=1 The particular solution is ypie $y = 0xe^{-0.2x} \cos 3x + 1xe^{-0.2x} \sin 3x$ $y = e^{-0.2x} \sin 3x$ (a) Find an ODE, y" + ay + by = 0 for the basis esandixesax & given basis are e- sax and oc. e- sax then by the fundamental theorem 1: the heneral solution (45) ie y = C, y, + (2 y2 or Here y = e x $y_2 = x e^{-\sqrt{2}x}$

•

$$y = C_1 e^{-\sqrt{2}x} + C_2 x e^{-\sqrt{2}x}$$

$$y = (C_1 + C_2 x)e^{-\sqrt{2}x}$$
Differentiating (1) with respect to α .

$$y'(x) = -\sqrt{2} (1 e^{-\sqrt{2}x} + C_2(xx - \sqrt{2} e^{-\sqrt{2}x} + e^{-\sqrt{2}x}))$$

$$y'(x) = -\sqrt{2} (1 e^{-\sqrt{2}x} + C_2(xx - \sqrt{2} e^{-\sqrt{2}x} + e^{-\sqrt{2}x}))$$

$$y'(x) = (C_1 + C_2 x) \times \sqrt{2} e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = (C_1 + C_2 x) \times \sqrt{2} e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = -\sqrt{2}y + C_2 e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = -\sqrt{2}y + C_2 e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = (C_1 + C_2 x) \times \sqrt{2} e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = -\sqrt{2}y + C_2 e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = -\sqrt{2}y + C_2 e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = -\sqrt{2}y + C_2 e^{-\sqrt{2}x} + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = -\sqrt{2}x - \sqrt{2}x - \sqrt{2}x + e^{-\sqrt{2}x} C_2.$$

$$y'(x) = -\sqrt{2}x - \sqrt{2}x - \sqrt{2}$$

Let $y_1 = e^{-0.5x}$ and $y = e^{-2.5x}$ are the basis of the expected $\triangle D = 0.5$ Then by Aindamental theorem, we have the a.s, i.e, y = c, y, $+ c_2 y_2$ i.e. $y = c_1 e^{-0.5x} + c_2 e^{-2.5x} = 0.5$ Differentiating, the a with respect to ai.e. y' = -0.5x

Le $y' = -0.5 \, \text{C}, \, \text{e}^{-0.5 \, \text{X}}$ $-2.5 \, \text{e}^{\text{2}} \, \text{e}^{\text{2}}$ Differentiating the Q with respect to x

 $y'' = 0.5 \times 0.5 \text{ C, } e^{-0.5 \times 2.5} \text{ C, } e^{-2.5 \times 2.5} \text{ C}_2 e^{-2.5 \times 2.5} \text{ C}_2 e^{-2.5 \times 2.5} \text{ C}_3 e^{-2.5 \times 2.5} \text{ C}_4 e^{-2.5 \times 2.5} \text{ C}_5 e^{-2.5 \times 2.5} \text{ C$

 $y'' = 0.25 (c_1 e^{-0.571} + 45) c_2' e^{-2.5x})$

Replacement by c_1 and c_2 by (1) $y=c_1e^{-0.5x}+c_2e^{-2.5x}$

C/e==9-Cze-2.52

 $-y'' = 0.25 (y - C_2 e^{-2.5 \pi})$ Again replacing (4) =

 $C_2 = \frac{9 - C_1 e^{-0.5 \chi}}{0^{-2.5 \chi}}$

Hy Find a second order linear ODE with all condution order linear ODE with given basis, e-2.52 cos (0.52) and the two basis of the two basis o

```
y = e 2.5 x ( G (05 0.5 x + C2 SHO 0.5x)
                           -25±05i
      d=2.5, 820.5
 ice again
   y = y(x) = c_1 e^{-2.5x} (050.5x + c_2 e^{-2.5x} Sinosx
  4(0)=1.5
  9(0) = C_1 = 0
  y'(x) = c[(e-1.5x) x - Sin 0.5x + Cos(0.4x) + -2.5xe
     + (2 [e 2.5x Cososx+ Sin 05x+25e.
 y'(x) = -0.5 \, \text{C}_{1} \, \text{e}^{-2.5 \, \alpha} \, \text{Sin } 0.5 \, \alpha - 2.5 \, \text{G} \, \text{e}^{-2.5 \, \alpha} \, \text{Cos(o.th.)}
         #+0.5 C2 e Cos 0.5 x - 2.5 C2 e Sin 05
y'(0)= -2.5 C +0.5 C2
                                     y'(0) = - 2.0
  => =0.5 C2 - 2.5 C1 = - 2
   Cre+5 - 6:502 = 2.506,
               6-5 (2 215 X1.5
    €0.5 C2 - 2.5 x 1-5 = -2
    40.5 C2 - 3.75 = -2
      €0,5 C2 = 1.75
        6 C2 = 3.5
 .. The a.s il the $500 2500
    y = e^{-2.57} \left[ 1.5 \cos 0.5x + 3.5 \sin 0.5x \right]
```

```
Differentialing 1 w. r. to x
      y= e 1.5 e 2.5 x (05 0.5 x + 3.5 e Sin 0.6 x
  => y' = 1.5 (e^{-2.5x} - Sin 0.5x \times 0.5 + cos 0.5 x \times -2.5 \times
       e-2.5x ]+ 3.5 [e-2.5x cos 0.5 x x 0.5 + Sin 0.5xx-2.5x
 => y'= 1.5 (-0.5 e-2.5x
Sin 0.5x-2.5 e cos 0.5 x)+
        3.5 (0.5 e-2.52 cos 0.5 x - 2.5 e-2.5x sin 0.5 x)
 \Rightarrow y' = t - 0.75 e^{-2.5\chi} Sin 0.5 \chi - 3.75 e^{-2.5\chi} COS 0.5 \chi + 1
           1. 75 e -2.5x coso.5x - 8.75 e -2.5x 8in 0.5x.
    y' = (-0.75 gino.5x - 3.75 coso.5x + 1.75 cososx
        -8.75 sin 05 x) e -2.5 x
    y' = ((-0.75 - 8.75) sin 0.57(+ (-3:75+1.75) cos 0.5 x)
    y' = e^{-2.57} \left( -9.5 \text{ Si'n } 0.5 \times -2 \text{ cos } 0.5 \times \right)
    y' = -e^{-2.5x} \left( 9.5 \text{ sin } 0.5x + 2 \text{ cos } 0.5x \right)
\Rightarrow y'' = -9.5 e^{-2.5x} Sin 0.5 x - 2 e (05 0.5 x).
   y'' = -9.5 \left[ e^{-2.5\chi} \cos 0.5 \times x \cdot 0.5 + \sin 0.5 \times x - 2.5 \times e^{-2.5\chi} \right]
         - $2 (e-2.5x) - Sin 0.5x x 0.5 f cos 0.5 x x - 2.5xe
\rightarrow y'' = -9.5 \times 0.5 e^{-2.5 \times 1} (05 0.5 x.+ 9.5 x 2.5 e Sin 0.5 x
  +2x05 = 2.5x Sin 05x + 2x2.5x e-2.5x (05 8.5 >c
```

```
y"= -4.75 e (05 0501 - 23.75 e 8in 0.5 8il
          1. e Sin 0.5 x + 5 e 2.5x (05 0.5 x
    y'' = (-4.75 \cos 0.5 \times -23.75 \sin 0.5 \times +
                             18in 0.5 x + 5 cos 0.5 x
   y"= ((-4.75+5) coso.5x+ (-23.75+1) sin 0.5x/e
   y = 0 - 95xe x cos 0.5x € -22.75, sin 0.5 xxe
4.00 Reduction of order
  9) x2y"+xy'-4y=0
     y' = x^{2}
y' = 2x
y'' = 2
    \Rightarrow 2x^{2} + 2x^{2} - 4x^{2} = 0
    Y,= x2 is a solution of the given D.E
    rie, First bouis.
     Then we have to find the and base
       y_2 = y_1 v = \int \frac{e^{-\int p dx}}{y_1^2} dx
    Rearranging the given equation through of
      \frac{x^2}{x^2}y'' + \frac{x}{x}y' - \frac{4}{x^2}y = 0
   J y" + 1 y' - 4 y=0 -0
      computing O with standardequestion
        4" + p(x) g1 - 9(50) y =0
```

$$Spdx = \int \frac{1}{x} dx$$

$$= \log (x)$$

$$= -\int pdx = e^{-\log x} = \frac{1}{x}$$

$$= \int \frac{1}{x} dx$$

$$= \int \frac{1}$$

Bolilió Existence and uniqueness theoram 101 Saturday Intial Value Problem (second Order) Consider the Initial Value problem (I.V.P) y"+p(x)y'+q(x)y=0 & y(10)=40, y'(x0)=y' If @ p(x) & q(x) are continuous function on a intervel 'I' and @ xe, E I, then the I VP, has a unique solution y(x) on 'I'

Wrongskain

The waongskain of y_i and y_i is defined by $\omega = \omega(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}.$ Eg: Let $y_1 = e^{\alpha}$, $y_{\alpha} = \cos \alpha$; the wrongskai $W = \omega(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}^{\tau}$ $= \begin{vmatrix} e^{x} & \cos x \\ e^{x} & -\sin x \end{vmatrix}$ = - exsinx - excosx = -ex (Sinx+cosx)

the properties of wrongskain

1) If y, and y, are any two solutions of the homogeneous LDE, then their wordskeing

 $\omega = \omega(y_1, y_2)$ is identically zero, or never zero on 'I'.

(2) If y, dy_2 are the two solutions of the homogeneous LDE on Γ' , then they are linearly dependent is their wrongstrain $W(y_1, y_2)$ is identially zero on $\Gamma = \begin{pmatrix} y, y_1 \\ y', y_2 \end{pmatrix} = 0$ and linearly independent $W(y_1, y_2)$ are not equal to zero

Test the dependency and independency for the two solution, $y_1 = \cos \omega x$, $4y_2 = \sin \omega x$ of the DE $= y'' + \omega^2 y = 0$.

arry; To check the dependency and independency, we have to calculate the Wrongskain $W = \omega(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} \cos \omega x & \sin \omega x \\ -\omega \sin \omega x & \omega \cos x \end{vmatrix}$

= COGWXXWCOSWX - SINWX x-WSINWX.

= W cos wa + W'Sin 2 W x

= $\omega((062\omega x, + \sin \alpha)) = \frac{\omega}{2} + 0$.

the given DIE is independent.

(2) show that $y = (c_1 + c_2 x)e^x$ is the General solution (a.s) of the D.E, y'' - 2y' + y = 0 on any interval

are: aiven, $y = (c_1 + c_2 x) e^{x}$ $y = c_1 e^{x} + c_2 x e^{x}$ $y = c_1 y_1 + c_2 y_2$ $y_1 = e^{x}$ Let e^{x} and $x e^{x}$ be two solutions of which is given.

 $y_1 = e^{x}$ $y_1' = e^{x}$ $y_1'' =$

 $y_{2} = xe^{x}$ $y_{2}' = x e^{x} + e^{x} \times 1 = \overline{x}$ $y_{2}'' = e^{x} + (x \cdot e^{x} + e^{x} \times 1)$ $y_{2}'' = e^{x} + (x \cdot e^{x} + e^{x} \times 1)$ $y_{2}'' = e^{x} + x e^{x} + e^{x}$ $y_{2}'' = e^{x} + x e^{x} + e^{x}$ $y_{2}'' = 2e^{x} + x e^{x}$

 $y_2^{1} = (x+2)e^{x}$

 $y_2'' - 2y_2' + y_2 = e^{\chi}(\chi + 2)$ enter $2 e^{\chi}(\chi + 1) + \chi e^{\chi}$ = $e^{\chi} + 2e^{\chi} - 2e^{\chi} - 2e^{\chi} + \chi e^{\chi}$ = e^{χ}

: $4z = x e^x$ is a solution of the given 0 : 4, & 4z are the solutions of the given 0 Now, for the y, and y_2 , their wrongskain $w(y_1,y_2) = |e^x| x e^x$

 $\omega(y_1, y_2) = \begin{vmatrix} e^{x} & x e^{x} \\ e^{x} & xe^{x} + e^{x} \end{vmatrix}$

 $= e^{\chi} (x e^{\chi} + e^{\chi}) - x e^{\chi} x e^{\chi}$ $= x e^{2\chi} + e^{2\chi} - x e^{2\chi}$ $= e^{2\chi} + 0 \quad \text{if } y_1 \& y_2 \text{ are linearly}$ $= e^{\chi} + 0 \quad \text{independent.}$ $= e^{\chi} + 0 \quad \text{independent.}$

Theorem

3 If p(x) and q(x) are continuous function on an open interval, I, then y"+p(x)y'+q(x)y=0 has a G.S, on'I'

Eng show that the following solutions are linearly independent.

(i)
$$e^{-0.5x}$$
 $e^{-2.5x}$
 $y_1 = e^{-0.5x}$, $y_2 = e^{-2.8-x}$

$$\omega = \omega (y_1, y_2) = \begin{vmatrix} -0.5 \chi & e^{-2.5 \chi} \\ -0.5 e^{-0.5 \chi} & -2.5 e^{-2.5 \chi} \end{vmatrix}$$

$$= e^{-0.5} \times -2.5 e^{-2.5} - e^{-2.5} \times -0.5 e^{-0.5}$$

tutoriala

```
. The given solution, y, = rossx & yz= sinsx
                                               (b)
   are linearly independent.
  By fundamental theorem, we have
                                              ins;
       9= C, y, + C2 42
     4= C, cossx+C2 Sinsx
    Differentiating 1 with rest to x.
    € g'=-5 C, sin5x+5C2 (055x -2)
  Diffendiating @ w. r. to o1.
     9"= -25 C, Cos52-25 C 28in52
    9" = - 25 (c, cos5x + C2 5005x)
    911 25 35 (1 cos 52 +62 - Sin 52
                                    from (D)
       y" = -25 y
    y"-+25 = of
      9"+254,=0
   9"+25y is the required D.E.
  Thus the IVP is 9"+25y=0
    4(0) = 3
                      y'(0) = -5
  we have the a.s, yet C, cos 5x + C251752
    y = C, cos o + C, sin o => y = C,
                 y(0) = 3 \Rightarrow C_1 = 3
 from (2 =)
   y'(x) = -5 C, Sin 52 +5 C2 COS 52
 91(0)=-5=
    y'(0) = -5C, sin 0 + 5(2 Co 50
     y'(0) = 5C_2 = 5C_2 = -5 = C_2 = -1
then the particulart solution, ypue
      y= 3 cos 5x - sin 5x
```

```
(b) cos h 1.8 oc, Sinh 1.8 x I. v-2 y(0) = 14.2
                                     9(0)= 16.38
ans; 9, = cos h 1800, 92 = Sin h 1.6 oc.
     w(y,y_*) = \begin{cases} \cos h \cdot 8x & \sin h \cdot 8x \\ \cos h \cdot 8x & \sin h \cdot 8x \end{cases}
      $ (08 pg +8xx + Sup pg +8
     = $(05 h 1.8x x 1.8 (05 h 1.8x - Sin h 1.8x x = 1.8x
     = 1.8 7(05 h2 1.8 x 8 8 1.8 5in h2 1.8
     = 1.8 (cos h2x - Sinh2x) = 1-8 +0
      the given solution y_1 = \cos h \cdot 1.8 \propto
                         9, = Sin h 1.8 x
     are lineally independent
    By Fundamental theorem 9= C, 4,+ C2 42
        y = c, cos h(1.8x) + c2 sin h(1.8x) -0
     Differentratiating w. R. tox
       41=1.8 C/Sin h(1.8x)+1.8 (2 Cos h/8x)-2
     piffentiating again wir tox
     y"= 8.24 C, cosh(1.8x) + 3.24 (25 in h(1.8x)
     y" = 3.24 ( c, cos h(18x) + cz sin h (1.8x)
         from @ => y" = 3.24 y
              y'' - 3.24 y = 0
       y"-3.24 y is the required D. E
       IVP is y (0) = 14-2
       (D=) y= C, cos h(1.8x) + C2 51nh(1.8x)
             (m) ( ) ( = 14·2
```

y'(0) = 16.38from (0) = 1.8 C | Sin b(18x) + 1.8 C | cos b (y'(0) = 1.8 C | Sin b(18x) + 1.8 C | 16.38 $C_2 = \frac{16.38}{1.8} = \frac{9.1}{1.8}$ $C_1 = 14.2$, $C_2 = 9.1$ The particular solution is y_p is $y_p = 14.2$ cos b(1.8x) + 9.1 Sin b(1.8x)

Tutoriala.

consider the n' solution bunchion $y_1, y_2, \ldots y_n$ defining on an open intervel J. These functions are called equation hinearly independent on J. If the exp $k, y_1 + k, y_2 + k, y_3 + k, y_4 + k,$

1) show that the solution function y, -x 42 = x2, 43 = x3 are Lineaely independent on any intervel -15x52 According to the conditions of independency Kixtkex2+Kgx3=0 $-K_1 + K_2 - K_3 = 0$ 2=2 aKi+4K2+8K3=0 -3 The given functions are linearly independent. 2) snow that the function $y_r = e^{-3x}$ $y_2 = e^{-3x}$ $y_3 = 8$ in 2 x are Linearly independ $y_2 = e^{-3x}$ 4) = e-3x, y2=cos2x, y3= Sin2x $\omega = \omega(y_1, y_2, y_3) = \begin{vmatrix} y_1 & y_2 & y_3 \\ y_1' & y_2' & y_3' \end{vmatrix} = \frac{35c}{4}$ $= \begin{vmatrix} -3x & \cos 2x & \sin 2x \\ -3e^{-3x} & -2\sin 2x & 2\cos 2x \\ -3e^{-3x} & -4\cos 2x & 4\sin 2x \end{vmatrix}$ $= e^{-3x} - 25in2x = 2\cos 2x$ $-4\cos 2x - 4\sin 2x$ $\cos 2x \left| -3e^{-3x} - 4\sin 2x \right| + \sin 3x \left| -3e^{-3x} - 4\sin 2x \right| + \sin 3x$ $-4\cos 2x - 4\sin 2x$ + (singe (12 e 3x cos 2x) 18 e 3x sinz 2 18 e 37 sinz 2 18 e 37

= 8e-3x (sin2x + (os2x) - 12e-3x sin2x (os2x) - 18e-35, sin2x (os2x) - 18e-35, r

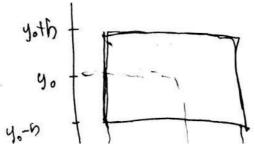
= 26 e - 3x + 18e - 3x (sin2 x + cos 2x)

Existence Theorem

Let the right side f(x,y) of the fixel order over f(x,y) f(x,y) of the fixel order over f(x,y) f(x,y)

Then the 2.v.p, have at least one solution y(x).

then this solution exist at least one thall $|x-x_o| \times d$ of the interval $|x-r_o|$ ca frese |x| is the Simallest of the two noss, a \$\frac{b}{k}\$



Uniqueness theorem

Ret 'f' and partial derivative fy. of is continuous & all (a,y) in the rectangle and bouri ded

(a) [fea, y)] < K,

(b) | fy (x,y)| ≤ M + (x,y) in R.

then the I.V.P, y' = f(x,y) where y(x, x,y) has at most one solution y(x,y). By Existence theorem the problem precisely one solution this solution exist at least for solution. all a. in that subintervol (x-x) < x

Choice of Rectangle

consider the I-V. P y'= 1+y2, y(0)=0

 $R: |x| \leq 5$, |y| < 3

From the given problem we have,.

a=5, b=3 and f(x,y)=1+y2

1f(x, y) = 11+y2 | < K

143 = 10

|f(x,y)| = | Ity2 | ==10

[fy (2,y)] = 12y] = M = 6

 $d = \frac{b}{k} = \frac{3}{10} = \frac{3}{2}$

[- 3 c a \$ 5]

The nth order non-homogeneous L.O.D.E. of the following form

 $\frac{d^{n}y}{dx^{n}} + \alpha_{1} \frac{d^{n-1}y}{dx^{n-1}} + \alpha_{2} \frac{d^{n-2}y}{dx^{n-2}} + \cdots + \alpha_{n}y = g(x)$ where α_{1} , α_{2} - . . α_{p} & α_{1} g(x). An effin

A linear DE has constant coefficient in the above equation all a_1, a_2, \dots, a_n are zero are of constant coefficient By the helpse of the differential operators $\frac{d}{dx} = D, \frac{d^2}{dx^2} = D^2, \frac{d^n}{dx^n} = D^n$ The above f is written in the form f and f is written in the form f is a polynomial in f.

Tuesday From the above equation, the particular integral p. I $y = \frac{1}{f(0)}g(x)$

* The Complete solution (c.s) $y'=C\cdot F+PI$

Depending upon the nature of gir; using different cases.

cases when g(x) of the form ear Here the particular Integral (PI) $y = \frac{1}{f(0)}g(x) = \frac{1}{f(0)}e^{0x}$ Replaying 0 = a[]posside = fa; con · If f(a) = 0, then the case of failure, $P^{\pm}; Y = \infty \cdot \frac{1}{F'(a)} e^{ax}, f'(a) \neq 0$ · If f'(a) = 0 then again the case of fails $P \cdot t$, $y = x^{2} \frac{1}{f''(a)} \cdot e^{x}$, $f''(a) \neq 0$ of f"(a) = o then again the case of father P.I, y = 203 1 1 100 . e , f 100 +0 and so on.

ans: $3P \Rightarrow (3+3) = 3 + 5 + 5 + 4 = 0$ Algorithms $3P \Rightarrow (3+3) = 3 + 5 + 5 = 4 + 4 = 0$ Algorithms $3P \Rightarrow (3+3) = 3 + 5 = 4 = 0$ Algorithms $3P \Rightarrow (3+3) = 3 + 5 = 4 = 0$ Algorithms $3P \Rightarrow (3+3) = 3 + 5 = 4 = 0$ Algorithms $3P \Rightarrow (3+3) = 3 + 5 = 4 = 0$

$$\frac{1}{14-8\times1^{3}+5\times1^{2}*8\times1+4}e^{x}$$

$$=\frac{1}{0}e^{x}$$
(ase of failure

pifferentiation the denominator of P.E (Airs)

$$\frac{1}{4 D^{3} - 6 D^{2} + 10D - 8} e^{x}$$
Replacing $q_{D} = q_{=1}$

Replacing $90 \pm 9 = 1$ = 9x + 1 $4x1^3 - 6x1^2 + 10x1 - 8$

$$= x \cdot \frac{1}{0} = e^{x}$$
 again the case of failure

Differentiations again

$$= \alpha^{2} \frac{1}{12 \times 1^{2} - 12 \times 1 + 10} e^{-\alpha}$$

$$= x^2 \cdot \frac{1}{10} e^x$$

: The (asaplete solution (c.s) ie

(5. if,
$$y = c.F + PI$$

 $y = (c_1 + c_2 e^2) + a(c_3 (o 52x + c_4 sin2x))$

$$+ x^{2} \frac{1}{10} e^{x}$$

(a) Find the solution of the D.E.
$$(D^2+3D+3)y=35$$
can: $S.F=$) (D^2+3D+2) $y=6$

$$A.E=$$
) $\lambda^2+3\lambda+2$

$$\lambda^2+3\lambda+2$$

$$roots = -\frac{2}{2} \text{ or } -\frac{4}{2}$$

$$x = -1, -2$$

$$CF = C_1 e^{-7} + C_2 e^{-27}$$

$$P \cdot I = Y = \frac{1}{F(D)} \quad g(x) = \frac{1}{D^2 + 3D + 2} \quad 5e^{07}$$

$$= \frac{1}{O^2 + 3x D + 2} \times 5 e^{07}$$

c.
$$s = C_1 e^{-x}$$
 = $\frac{5}{a} e^{-x}$
c. $s = c_1 e^{-x} + c_2 e^{-2x} + \frac{5}{2}$

```
P.I = 1 g (20)
                     F(D2) Cosax of Sinax.
                                   (Replacing D2 = -a2)
     F(-a^2) (05 0x [] Sinax F(-a^2) \neq 0

If 1. (-a^2) = 0, the case of failure
      P.I = x. (05 6x 103 5 nax
                                                      F(a2) $0
                               then the case of failure
  P.I = \chi^2. 1

F"(-\alpha^2) cos ax [ox 5:nax

provided f" (-\alpha^2) \neq 0 and 80 on.
  @ 801ve (D3+1)y = (0822
                                    \begin{cases} (a^{3}+b^{3}) = \\ (a+b)(a^{2}-ab+b^{2}) \\ (\lambda+1)(\lambda^{2}-\lambda+1) \end{cases}
     5F > (D3+1) 9 =0
noots are \lambda = -1, \frac{1}{2} \pm \frac{3}{3}; \lambda = \frac{1 \pm \sqrt{3}}{2} (x = \frac{1}{2}, \frac{1}{2}, \frac{3}{2})
        y= e, e + e 12 ((2005 13 x + C3 81 n 13 x)
     c.F ie ye ie
```

P.1 =
$$\frac{1}{F(0)}$$
 $g(x)$ $f(0^{2}) = 03+1$ $g(x) = (052x)$ $f(0^{2}) = (052x)$ $f(0^$

PI =
$$x$$
, $\frac{1}{1 \cdot (D^2)}$ sin $m\pi$

$$= x \cdot \frac{1}{4D^3} \cdot \sin mx \cdot (D^2 = -a^2 - h)$$

$$= \frac{x}{-4m^2} \cdot \frac{1}{D} \cdot (\sin mx) \cdot \sin mx$$

$$= \frac{x}{-4m^2} \cdot \int \sin mx \, dx \cdot \int \sin mx \, dx$$

$$= \frac{x}{-4m^2} \cdot \int \sin mx \, dx \cdot \int \sin mx \, dx$$

$$= \frac{x}{-4m^2} \cdot \int \sin mx \, dx \cdot \int \sin mx \, dx \cdot \int \sin mx \, dx$$

$$= \frac{x}{-4m^2} \cdot \int \sin mx \, dx \cdot \int \cos mx \, dx \cdot \int \cos mx \, dx$$

$$= \frac{x}{-4m^2} \cdot \int \sin mx \, dx \cdot \int \cos mx \, dx \cdot \int \cos mx \, dx \cdot \int \cos mx \, dx$$

$$= \frac{x}{-4m^2} \cdot \int \sin mx \, dx \cdot \int \cos mx \, dx \cdot \int \cos$$

B) Some FREKTER) y

theorem for a negative index is applicable) The remaining factor will be of the form [1+ P(D)]. Or [1- P(D)] Take this factor to the numerator and takes of the form [1+0(0)] or [1-0(0)] Then expand it in assending powers of b' as far as the term containing on Since $D^{m+1}(x^m) = 0$, $D^{m+2}(x^m) = 0$ and so on. a solve $(D^2+a)y = x^2$ ans: $SF \Rightarrow (D^2 + a) y = 0$ $A \cdot E = \lambda^2 + \lambda = 0$ $\chi^2 = -\alpha \implies \lambda = \pm i \bar{\beta}. \quad (\alpha = 0, \beta = \sqrt{3})$ costation y ie y= qe°x ((1 costax+C2sinfix) y= (1 cos Ja x + (2 6 n Ja x. g(x)=x m P.I = 1 x m (taking the lowest degree turns $=\frac{1}{2(0^2+1)}$ $\propto 2$ $= \frac{1}{2\left(1+\frac{D^2}{2}\right)} x^2$ $=\frac{1}{2}\left(1+\frac{D^2}{2}\right)^{-1}$, x^2

$$P \cdot I = \frac{1}{a} \left[1 - \frac{0^{2}}{2} + \frac{0^{4}}{4} \cdot ... \right] x^{2}$$

$$| Have, x = 0^{1}$$

$$| D(x^{1}) = dx$$

$$| D^{2}(x^{2}) = 0$$

$$| D^{2}(x^{2})$$

$$P = \frac{1}{8} =$$

$$p. \Gamma_2 = \frac{1}{D^3 - 8} \cosh 2x$$

$$P \cdot \Gamma_{a} = \frac{1}{D^{3}-8} \left(\frac{e^{2x} + e^{-2x}}{2} \right)$$

$$= \frac{1}{2} \left(\frac{1}{D^{3}-8} \left(e^{2x} + e^{-2x} \right) \right)$$

$$= \frac{1}{2} \left(\frac{1}{D^{3}-8} e^{2x} + \frac{1}{D^{3}-8} e^{-2x} \right)$$

$$=\frac{1}{2}\left[\frac{1}{2^{3}-8}e^{2x}+\frac{1}{20^{3}-8-8}e^{-2x}\right]$$

$$=\frac{1}{2}\left[\frac{1}{0}e^{2x}+\frac{1}{-16}e^{-2x}\right]$$
 case of failure

Replacing e^{2x} (D=a=a) e^{-2x} (D=a=a)and

Differentiating the denominator muliphy 1.

$$= \frac{1}{2} \left[x : \frac{1}{3p^2} e^{2x} - \frac{1}{16} e^{-3x} \right]$$

$$= \frac{1}{2} \left[x - \frac{1}{3x 2^2} e^{2x} - \frac{1}{16} e^{-3x} \right]$$

$$= \frac{1}{2} \left[x - \frac{1}{3x 2^2} e^{2x} - \frac{1}{16} e^{-3x} \right]$$

$$= \frac{1}{2} \left[\frac{x}{12} e^{2x} - \frac{1}{16} e^{-3x} \right]$$

$$C \cdot S = C \cdot F + (P \cdot I_1 + P \cdot I_2)$$

$$e.s = Ge^{ax} + e^{-x} (C_0 \cos 3x + C_3 \sin 3x + \frac{1}{8} (x^4 + 5x + 1) + \frac{1}{2} \left[\frac{x}{12} e^{ax} - \frac{1}{16} e^{-ax} \right]$$

p. cosarz

$$= \frac{3D \cdot \cos 2x + a \cos 2x}{-40}$$

$$\frac{2}{3} = \frac{6}{6} \sin 2x + 2 \cos 2x$$

$$P \cdot I_{2} = \frac{1}{b^{2} + 3D + 2} e^{0x}$$
. (D=a=0)
= $\frac{1}{0 + 3x0 + 2} = \frac{1}{2}$.

$$P \cdot I = 2 \left(\frac{1}{20} (3 \sin 2\alpha - (052x) + \frac{1}{2}) \right)$$

$$= \frac{2}{20} * (3 \sin 2\alpha - (052x) + \frac{1}{2})$$

$$= \frac{1}{10} (3 \sin 2\alpha - (052x) + 1)$$

2 Singe Cosy =

Art.
$$(p^{3}-p^{2}-6p)y = x^{2}+1$$

Art. $(p^{3}-p^{2}-6p)y = x^{2}+1$
Art. $(p^{3}-p^{2}-6p)y = x^{2}+1$
 $(p^{3}-p^{2}-4x) = x^{2}+1$
 $(p^{3}-p^{2}-6p)y = x^{2}+1$
 $(p^{3}-p^{2}-4x) = x^{2}+1$
 $(p^{3}-p^{2}-6p)y = x^{2}+1$
 $(p^{3}-p^{2}-4x) = x^{2}+1$
 $(p^{3}-p^{2}-p^{2}-4x) = x^{2}+1$
 $(p^{3}-p^{2}-p^{2}-2p) = x^{2}+1$
 $(p^{3}-p^{2}-p^{2}-2p) = x^{2}+1$
 $(p^{3}-p^{2}-p^{2}-2p) = x^{2}+1$
 $(p^{3}-p^{2}-p^{2}-2p) = x^{2}+1$
 $(p^{3}-p^{2}-p) = x^{2}+1$
 $(p^{3}-p^{2}-p) = x^{2}+1$
 $(p^{3}-p) = x^{2}+1$
 $(p^{3}-p)$

$$= -\frac{1}{6} \cdot \frac{1}{D} \left[1 - \frac{D}{6} + \frac{D^{2}}{6} + \frac{D^{2}}{36} \right] \quad (x^{2}+1) = 2 \quad q)$$

$$= -\frac{1}{6} \cdot \frac{1}{D} \left[(x^{2}+1) - \frac{1}{6} D(x^{2}+1) + \frac{1}{6} D(x^{2}+1) + \frac{1}{36} D^{2} (x^{2}+1) \right]$$

$$= -\frac{1}{6} \cdot \frac{1}{D} \left[(x^{2}+1) - \frac{1}{6} \times \partial x + \frac{1}{6} \times \partial x + \frac{1}{36} \times \partial x \right] \quad \frac{1}{3} + \frac{1}{16} = \frac{16}{54} \times x$$

$$= -\frac{1}{6} \cdot \frac{1}{D} \left[(x^{2}+1) - \frac{1}{6} \times \partial x + \frac{1}{6} \times \partial x + \frac{1}{36} \times \partial x \right] \quad \frac{1}{54}$$

$$= -\frac{1}{6} \cdot \frac{1}{D} \left[(x^{2}+1) - \frac{1}{6} \times \partial x + \frac{1}{3} + \frac{1}{16} \right] \quad \frac{1}{54}$$

$$= -\frac{1}{6} \cdot \frac{1}{D} \left[(x^{2}+1) - \frac{1}{3} \times \partial x + \frac{1}{3} + \frac{1}{16} + 1 \right] \quad \frac{1}{54}$$

$$= -\frac{1}{6} \cdot \frac{1}{D} \left[(x^{2}+1) - \frac{1}{3} \times \partial x + \frac{1}{3} + \frac{1}{16} + 1 \right] \quad \frac{1}{54}$$

$$= -\frac{1}{6} \cdot \frac{1}{10} \left(x^2 - \frac{1}{3} x + \frac{25}{18} \right)$$

$$= -\frac{1}{6} \int x^2 - \frac{1}{3} x + \frac{25}{16} dx$$

$$= -\frac{1}{6} \left(\frac{x^3}{3} - \frac{x^2}{6} + \frac{25}{18} x \right)$$

$$= -\frac{x^3}{18} + \frac{x^2}{36} - \frac{25x}{108}$$

:. The (.5 ie
$$y = cF + P \cdot I$$

:. $y = c_1 + c_2 e^{3x} + c_3 e^{-2x} + -\frac{x^3}{18} + \frac{x^2}{36} - \frac{25x}{108}$

HW 102,002,00 22 2.

De increshribe

a) solve
$$(D^2-4D+4)y = 6na1$$
, given that

 $y = \frac{1}{8}$ $Dy = 4$, when $x = 0$. Find the value of

 y' when $x = 0$ $x = \frac{11}{4}$ a

and: $SF = 0$ $D^2 - 4D + 4)y = 0$
 $AF = 0$ $A^2 - 4A + 4 = 0$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A \times 1$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A \times 1$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A \times 1$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A \times 1$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A \times 1$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A \times 1$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A \times 1$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{4} + \sqrt{(4f - 4x) \times 4}$
 $A = \frac{1}{$

$$y(x) = (c_1 + c_1 \alpha) e^{2x} + \frac{1}{8} \cos 3x$$

$$y(x) = (c_1 + c_1 \alpha) e^{2x}$$

$$y'(x) = (c_1 + c_1 \alpha) e^{2x}$$

$$y'(x) = (c_1 + c_2 \alpha) e^{2x}$$

$$y'(x) = (c_1 + c_2$$

(a+b)= (a+b) (a2a-ab+b2)

$$\begin{array}{lll}
(A+1) & (A^{2}-\lambda+1) \\
100(5) & A=-1 \\
\lambda^{2}-\lambda+1 & 0
\end{array}$$

$$\begin{array}{lll}
\lambda & = & 1 \pm \sqrt{13} + 2x \times 1 \times 1 \\
& = & \frac{1}{2} \pm \frac{\sqrt{3}}{3} \cdot \left(\frac{x^{2}-1}{2}, \frac{p-\sqrt{3}}{3} \right)
\end{array}$$

$$\begin{array}{lll}
C & = & C_{1} e^{-x} + e^{-x} \left(C_{2} \cos \sqrt{3} x + C_{3} \sin \sqrt{3} x \right)
\end{array}$$

$$\begin{array}{lll}
P & = & \frac{1}{F(D)} g(x)
\end{array}$$

$$\begin{array}{lll}
& = & \frac{1}{D^{3}+1} \cos 2x
\end{array}$$

$$\begin{array}{lll}
& \cos 2x
\end{array}$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x
\end{array}$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x
\end{array}$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x
\end{array}$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x
\end{array}$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x
\end{array}$$

$$\begin{array}{lll}
& = & \frac{1}{D^{2}+1} \cos 2x$$

$$\begin{array}{lll}$$

Ht 16x-4

· H4P (osax

16 x

$$= \frac{(1+4D)(\frac{1}{6})$$

$$\frac{dy}{dx} = -c_1 e^{-x} + c_3 \left(e^{\frac{y_2 x}{2}} \times - \frac{8x \sqrt{3}}{3} \times - \frac{8x \sqrt{3}}{3} \times + \cos \frac{x}{3} \times \frac{1}{2} e^{\frac{x}{3}} \right) + c_4 \left[x \sqrt{3} \right] \frac{4}{3} \cos \cos \frac{x}{3} \times + \frac{1}{65} x \cdot 2x - \sin 2x - \frac{8}{65} x \cdot 2 \cos \frac{x}{65}$$

$$\frac{dy}{dx} = -4e^{-x} + -\frac{13}{3}c_3 e^{-x/2x} + \frac{1}{3}c_3 e^{-x/2x} \cos \frac{13}{3}x + \frac{1}{3}c_3 e^{-x/2x} \cos \frac{13}{3}c_3 e^{-x/2x} \cos \frac{13}{3}x + \frac{1}{3}c_3 e^{-x/2x} \cos \frac{13}{3}x + \frac{1}{3}c_3 e$$

Case-4
when
$$g(x)$$
 of the form, $e^{ax} V_{i}(x)$

$$P \cdot E = \frac{1}{F(D)} \cdot g(x)$$

$$P \cdot E = \frac{1}{F(D)} \cdot \left[e^{ax} \cdot V_{i}(x) \right]$$

$$P \cdot E = e^{ax} \cdot \frac{1}{F(D+a)} \cdot V_{i}(x)$$

$$P \cdot E = e^{ax} \cdot \frac{1}{F(D+a)} \cdot V_{i}(x)$$

$$P \cdot E = e^{ax} \cdot \frac{1}{F(D+a)} \cdot V_{i}(x)$$

$$P \cdot E = e^{ax} \cdot \frac{1}{F(D+a)} \cdot V_{i}(x)$$

$$P \cdot E = e^{ax} \cdot \frac{1}{F(D+a)} \cdot V_{i}(x)$$

$$= \frac{a+1}{a} \cdot \frac{1}{a} \cdot$$

 $= e^{\partial x} \frac{1}{(0+2)^2 - \partial(0+2) + 5} (Sin x)$ $= e^{\partial x} - \frac{1}{0^2 + 40 + 4 - \partial 0 - 4 + 5} (Sin x)$

$$= e^{\partial x} \frac{1}{D^{2} + \partial D + 5}$$
Replacing,
$$(D^{2} = -(a^{2}) = -(a^{2}) = -1$$

$$= e^{\partial x} \frac{1}{-1 + \partial D + 5}$$

$$= e^{\partial x} \frac{1}{\partial D + 4}$$

$$= e^{\partial x} \frac{1}{\partial x}$$

$$= e^{\partial$$

$$= e^{4x+3} \frac{1}{-30(1-\frac{D}{30}+\frac{D^2}{30})}$$

$$= \frac{e^{4x+3}}{30} + \left(1 - \left(\frac{D}{30} + \frac{D^2}{30}\right)\right)^{-1} > 0$$

$$= -\frac{e^{4x+3}}{30} \left[1 + \left(\frac{D}{30} + \frac{D^2}{30}\right) + \left(\frac{D}{30} + \frac{D^2}{30}\right)^2\right] \propto^2$$

$$(a+b^2) = \left(\frac{D}{30}\right)^2 + 2 \times \frac{D^3}{30} \left(\frac{powery}{e \cdot e \cdot e \cdot e \cdot e}\right)^2$$
(if cancel

 $\frac{(1-x)^{2}}{1+x+x^{2}+y}$ $x = \frac{1}{30} + \frac{1}{12}$

$$= \frac{e^{-4x+3}}{30} \left[1 + \frac{D}{30} + \frac{D^2}{30} + \frac{D^2}{900} \right] x^2$$

$$= -\frac{e^{42+3}}{30} \left[x^{2} + \frac{1}{30} D(x^{2}) + \frac{1}{30} D^{2}(x^{2}) + \frac{1}{900} D^{2}(x^{2}) \right]$$

$$= -\underbrace{4^{4x+3}}_{30} \left[x^2 + \underbrace{\frac{9x}{30}}_{30} + \underbrace{\frac{2}{30}}_{30} + \underbrace{\frac{2}{909}}_{909} \right]$$

$$= \frac{e^{4x+3}}{30} \left(x^{2} + \frac{4x}{2015} + \frac{31}{450} \right)$$

when g(x) is of the form, g(x)= x v_s(x) P.I = I DOV(x) $=\frac{\alpha\cdot 1}{F(0)} \vee - \frac{F'(0)}{(F(0))^2} \vee V$ 0 solve $(D^2 - 20 + 1)y = \infty \sin x$ BF > (D2-20+1) y =0 AR => 12-21+1 ==0 $A = \frac{2 \pm \sqrt{4 - 4 \times 1 \times 1}}{2 \times 1}$ $=\frac{2\pm}{2}=1\pm 1$ CF = (c, + c2x)ex

$$P \cdot I = \underbrace{\frac{1}{F(D)}}_{F(D)} \cdot g(x)$$

$$= \underbrace{\frac{1}{F(D)}}_{D^2-2D+1} \cdot g(x)$$

$$= n^{2-20.2} \cdot sin x - \frac{(a 0 - a)}{(b^{2}-ab+1)^{2}} sin x \cdot \frac{bott au}{(a sea}$$

$$= n^{2-20.2} \cdot sin x - \frac{(a 0 - a)}{(b^{2}-ab+1)^{2}} sin x \cdot \frac{bott au}{(a sea}$$

$$= n^{2-20.2} \cdot sin x - \frac{(a 0 - a)}{(b^{2}-ab+1)^{2}} sin x \cdot \frac{bott au}{(a sea}$$

$$= D^{2} = 20+1$$

$$= 1$$

$$= Sin x - (20-2)$$
Replacing $D^{2} - a^{2} - 1^{2} - 1$

$$= x \cdot (\frac{-1}{3}) \cdot \frac{1}{D} \sin x - \frac{1}{2} (D-1) \cdot \frac{1}{D^2} \sin x.$$

$$= \frac{1}{3} x \cdot -(\cos x) - \frac{1}{3} (D-1) \sin x$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (D-1) \sin x$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (D-1) \sin x$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{1}{3} (\cos x - \sin x)$$

$$= \frac{x \cos x}{2} + \frac{x \cos x}{2} + \frac{x \cos x}{2}$$

$$= \frac{x \cos x}{2} + \frac{x \cos x}{2} + \frac{x \cos x}{2}$$

$$= \frac{x \cos x}{2} + \frac{x \cos x}{2} + \frac{x \cos x}{2}$$

$$= \frac{x \cos x}{2} + \frac{x \cos x}{2} + \frac{x \cos x}{2} + \frac{x \cos x}{2}$$

$$= \frac{x \cos x}{2} + \frac{x \cos$$

 $= \frac{1}{(D^2+1)^2} R \cdot P \text{ of } x^2 e^{ix} = x^2 (\cos x + i \sin x)$ = x2 cosx + i x2 sinx, (Applying call 4) . x 2 cosx = Real part of x2e'x · x 2 Sinx = I maginary part of xe D+a = D+2 $= R \cdot P \circ f e^{ix} \frac{1}{\left((D+i)^2+1\right)^2} \cdot \infty^2$ $1 - \frac{n}{1i} \propto + \frac{n(n+1)}{2i} \propto^2$ $\frac{1}{\left(D^2+2Di+i^2+1\right)^2}$ $\frac{1}{(D^2 + 2Di)^2} \propto^2 \cos^2 3$ $\frac{1}{4i^{2}D^{2}\left[1+D^{2}\right]^{2}} \times 2 \qquad \frac{1-n\chi+n\eta_{1}}{2i}$ $\frac{4i^{2}D^{2}\left[1+D^{2}\right]^{2}}{2i0}$ = R.P of e^{4ix} $\frac{1}{-4D^2}\left(1+\frac{D^2}{2iD}\right)^{-2} \times xc^2 \qquad \left(\frac{HD^2}{2iD}\right)^2 = \frac{1}{2}\left(\frac{1+D^2}{2iD}\right)^{-2}$ = R.P of $e^{ix} \frac{1}{-4p^2} \left(1 - \frac{ap^2}{aib} + \frac{6}{-ac} \left(\frac{p^2}{aip}\right)^2\right) \times \left(\frac{p^2}{aip}\right)^2$ = R.P of $e^{ix} \frac{1}{-4p^2} \left(1 + ip + \frac{3}{4} + \frac{9^2}{2p^2}\right)^2 \times \left(\frac{p^2}{2p^2}\right)^2$ = R.P of $e^{ix} \left(-\frac{1}{4} \right) \left(\frac{1}{D^2} \right) \left(x^2 + i D(x^2) - \frac{3}{4} D^2(\hat{x}^2) \right)$ 18 P of eix (-1)(-1)[x2+2ix - 34

= R.P of
$$e^{ix} \left(\frac{-1}{4} \right) \left(\frac{1}{D} \right) \left(\frac{1}{D} \right) \left(\frac{1}{A} \right) \left(\frac{1}{D} \right) \left(\frac{1}{D} \right) \left(\frac{1}{A} \right) \left(\frac{1}{A} \right) \left(\frac{1}{D} \right) \left(\frac{1}{D} \right) \left(\frac{1}{A} \right) \left(\frac{3}{A} \right) \left(\frac{3}{A}$$

$$\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{5} \cdot \frac{3}$$

 $\frac{1}{48} \left[4 x 3 \sin x - \left(x^4 - 9x^3 \right) \cos x \right]$

 $\frac{1-5}{48} = e_{1} \cos x + c_{2} \sin x + c_{3} \cos x + c_{4} \sin x - (x^{4} - 9x^{2})\cos x$

Method of variation of parameter

Fire Finding p. I of second order linear operand method of rale atten of parameters

Trus method is a wife general and applicable only for the ODE of the form y'' + P(x)y' + Q(x)y = g(x)

Let the CF, $y = c_1y_1 + c_2y_2$, where c_1, c_2 are ondependent is lutions. Then the P·I of the above equation of the form i'e, $p = c_1y_1 + c_2y_2$, where c_1, c_2 are ondependent of the form i'e, $p = c_1y_1 + c_2y_2$ with $c_1y_1 + c_2y_2$

P. I = -9, \(\frac{429}{\omega} dxc + 42 \int \frac{419}{\omega} dx. \)

Linea equation can be reduced to linear equator with constant coefficient by changing the independent vasiable & to Z. $\frac{\left|\begin{array}{c} x=c^{2} \\ \overline{z}=logx \end{array}\right|^{2} \frac{dy}{dz} = \frac{dy}{dz} \cdot \frac{dz}{dz} \left|\begin{array}{c} x \ dy \\ \overline{dz} = \frac{dy}{dz} \end{array}\right|^{2} \frac{dy}{dz} = \frac{dy}{dz}$ $\frac{dz}{dz} = \frac{1}{z} \cdot \frac{dy}{dz} = \frac{dy}{dz} \cdot \frac{1}{z} \left|\begin{array}{c} x \ dy \\ \overline{dz} = 0, y \end{array}\right|$ similarly $x^2 \frac{d^2y}{dz^2} = D, (D, -1)y$ and $\alpha^3 \frac{d^3y}{d\alpha^3} = p_i (p_i-1)(p_i-2)y...$ $x^{n} \frac{d^{n}y}{dx^{n}} = D_{i} \left(D_{i} - I \right) \cdots D_{2} - \left(e^{n+1} \right) y$ Substituting these terms in the given D.E. it will be definitely change to the a LDE with constant coefficients and we can solve the

1) Solve $x^2 \frac{d^2y}{dx^2} - 4\pi c \frac{dy}{dx} \cdot + 6y = x$

and this can be occurred to the Ording D.E with constant coefficient by the substitution

Sc dy = Diy

2 = ez

x2 d2y = 0, (D1-1)y

problem by diss the method discussed above

 $(e(D_{1}(D_{1}-1)-4D_{1}+6)y=e^{z}$ $(D_{1}^{2}-D_{1}-4D_{1}+6)y=e^{z}$ $(D_{1}^{2}-D_{1}-4D_{1}+6)y=e^{z}$ $(D_{1}^{2}-D_{1}+6)y=e^{z}$

 $AE_{3} = \frac{5m+6}{\lambda_{1}^{2}-5\lambda+620} = 0$

$$\lambda m A = \frac{5 \pm \sqrt{35 - 4 \times 1 \times 6}}{2 \times 1} = \frac{5 \pm \sqrt{35 - 4 \times 1 \times 6}}{2} = \frac{5 \pm \sqrt{35 - 4 \times 1 \times 6}}{2} = \frac{5 \pm \sqrt{35 - 4 \times 1 \times 6}}{2} = \frac{5 \pm \sqrt{35 - 4 \times 1 \times 6}}{2} = \frac{6}{2} + \frac{4}{2} = \frac{6}{2} + \frac{4}{2} = \frac{6}{2} + \frac{4}{2} = \frac{32}{2} = \frac{32}{2$$

$$y = c_1 e^{\mathbf{a}} + c_2 e^{\mathbf{3}}$$
 $\left(e^{\mathbf{z}} = \infty\right)$

P.
$$T = \frac{1}{p(0)} x$$

$$= \frac{1}{p(2-5)(6)} e^{2}$$

$$= \frac{1}{p(2-5)(6)} e$$

Osolve $a^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} = y = (\log x) (sin \log x)$ Only Definitely the given eqn, is a H.L.D. 5.

This can be reduced too the Oridinary I now with

constant coefficient by the substitution (1, (0,-1) - 3 &0, # + Dy = z (Sinz+1) | x dy - Diy)((D,-1)-3D,+1) y= zsmz+z | x2diy = Q(D,-11)y 2,2-D1-30,+1) g = Z 5,72+2 $|n_1^2 - 4D_1 + 1| y = 0$ $\lambda^2 - 4\lambda, +1 = 0$ x = 4 ± \[\langle \text{16-4 x1x1} \] $\lambda = 4 \pm 2\sqrt{3} = 2 \pm \sqrt{3} = 2 \pm \sqrt{3} = 2 \pm \sqrt{3}$ $CF = C_1 (2+\sqrt{3})^2 + C_2 (2-\sqrt{3})^2$ $P \cdot I = \frac{1}{f(0)} g(0)$ $= \frac{1}{p_1^2 - 4p_1 + 1} \left(z \cdot S_1 \cdot p_2 + z \right)$ $p_1^2 - 4p_1 + 1$ $p_2^2 \cdot I_1 \cdot p_2^2 \cdot I_1$ $p \cdot I_1 = \frac{1}{D_1^2 - 4D_1 + 1} = \frac{1}{z \cdot v} = \frac{2 \cdot 5' \cdot 0z}{z \cdot v} \cdot \frac{p \cdot 1 - 2}{F(0)} = \frac{1}{F(0)} \frac{v - F'(0)}{(F(0))^2}$ = $z \frac{1}{D_i^2 - 4D_i^2 + 1} \frac{\sin z}{(D_i^2 - 4D_i + 1)^2} \frac{6D_i + 4}{(D_i^2 - 4D_i + 1)^2} \frac{\sin z}{(D_i^2 - 4D_i + 1)^2}$ $= z \frac{1}{-1-40+x} \sin z - \frac{(20,-4)}{(-x-40+1)^2} \sin z$

i dit - se dy + 4 = log a clearly this is caushy's equation. Thus can be to the oridinary linear Dir by the nobstitution ocee or zelogo $\frac{\partial}{\partial x} = D_1 y, \quad x^2 \frac{d^2 y}{d x^2} = D_1 (D_1 - 1) y$ (b, (0,-1) - D,+1) y = z (D,2-D,- D,+1)9=2 & \$1->(D,2 - 2 D,+1)y =0. NE > 1 - 21, +1 =0 1 = 2 + 54 - 4x 1x 1 = 2 + => 2 + 1 (F = (C+ C2x)ex: (4-2) $\frac{1}{D_{i}^{2}-2D_{i}+1} z^{4} \qquad (asc 3) =$ CFie y: (C,+ C2 12) e2 = (D2-2D,)+1 = 21 (D12-2B) $= \left(1 + \left(D_1^2 - 2D_1\right)\right)^{-1} e^{-\frac{1}{2}}$ =(1+ 2D1) = y. (c, + (2Z)e + 2+2 = z + 20/12) $y = (c, + c_2 \log x) e_{xx} + \log x + \log x$ = Z + 2

(a) Solve
$$x^2 \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} + y = \frac{\log x (\log sinz) + 1}{x}$$

Legender's Linear D. F(s)

An equation of the form ather)
$$(a+bx)^{n} \frac{d^{n}y}{dx^{n}} + K_{1}(a+bx)^{n-1} \frac{d^{n+1}y}{dx^{n-1}} + K_{2}(a+bx)^{n-2} \frac{d^{n-2}y}{dx^{n-2}} + \cdots + K_{n}y = g(x)$$

where all case are constants and g(x) is function of 'a' alone. For solving the above ODE, we have to change this into oriding Linual D. E by the substitution of (arbx) $(a+bx) = e^{z}$ ic, $z = \log(a+bx)$

$$(a+bx)=e^{x}$$
 ic, $z=\log(a+bx)$

$$\frac{dz}{dx} = \frac{1}{a+bx} \cdot b = \frac{b}{a+bx}$$

$$\frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} = \frac{dy}{dx} \cdot \frac{b}{a+bx}.$$

$$(a+bx) \frac{dy}{dx} = b \cdot \frac{dy}{dx}$$

$$= b \cdot \frac{dy}{dx} = \frac{b \cdot D_1 y}{dx}$$

$$= \frac{b}{dz} \cdot \frac{dy}{dz} = \frac{b \cdot D_1 y}{dz}$$

Similarly $(a+bx)^2 = \frac{d^2y}{dx^2} = b^2 D_1(D_1-1)y$ $(a+bx)^3 = \frac{d^3y}{dx^3} = b^3 D_1(D_1-1)(D_1-2)y$ and so on one can be solved by the method of descensed above

(1+x) dy + (1+x) dy + g = 2 Sin lag(1+x) in leady the equation is Legender's Linear equations and this can be converted to the adinary Linear D.E with constant coefficients by the substitution of (a+6x) = ez, z=log(atta) $\frac{\partial}{\partial x} = 1 D_{,y}$ (1+x)2 deg = 120, (p,-16) y (12 D, (D,-1) + D, + 1)y = a sinz BFD (0,2 +1) 9 = 2 Sinz & AP => (202+1) =0 $\lambda^2 = \sqrt{1} \Rightarrow \lambda = \pm i \quad (\alpha = 0, \beta = 1)$ (F 18, 9= e x ((, cosx+ (2 sinx) ie y= (c, cos z + c2 sin z) $D_1^2 = -a^2 = -1^2$ $= 2 \frac{1}{1+D_1^2} \sin 2$ = a 1 sinz = a sinz the case of failu (sufferentiating the demandrature multiply the numerature with z P-I = 2 Z . 1 Sinz csize = cf + PI y: c, cosz + C2 sinz e-z cosz = · &z 1 Sinz :: y = C, cos(log(atbx))+E2Sinling(atbx)

equiding

(a): Cis ie,
$$y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$$

(a): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(a): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(b): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(a): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(b): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(a): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(a): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(b): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(a): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(b): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{42\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{4\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{4\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{4\cos x}{4\cos x}\right)$

(c): Cis ie, $y = c_1 \left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac{1}{8}\left(\frac{2+\frac{1}{3}}{3}\right)\log x + \frac$

(3x+2)²
$$\frac{d^2y}{dx^2}$$
 + 5(3x+2) $\frac{dy}{dx}$ -3y = $\alpha^2 + x + 1$.

ans: Clearly this is a Legender Linear equation having the standard form

$$(3x+2)^2 \frac{d^2y}{dx^2} + 5(3x+2) \frac{dy}{dx} - 3y = x^2 + x + 1$$

$$(axtb)^2 \frac{d^2y}{dx^2} + 5 (atb) \frac{dy}{dx} = g(x).$$

and it can be solved by applying the following rearrangement. or substitution.

$$e^{x} = 3x4 a$$
 $z = \log (3x4 2)$

$$\Rightarrow \propto = \frac{e^{z} - 2}{3} + \propto \frac{e^{z}}{4}$$

$$= x \frac{dg}{de} = a D_1 y = 3 D_n y$$

*
$$x^2 \frac{d^2y}{dx^2} = a^2 e^{-1}(0, -1)y = 3^2 e^{-1}(0, -1)y$$

: The equation becomes,
$$(a-b)^2$$

 $[3^2 \times 0, -(0,-1) + 5 \times 30, -3] y = (e^2 - 2) + e^2 - 2 + 1$

$$(q \cdot D_1^2 - D_1) + 15D_1 - 3)y = \frac{e^{2x} - 4x + (e^{x} - e^{x} + 1)}{q^{2x} + 15D_1 - 3}y = \frac{e^{2x} - 4x + (e^{x} - e^{x} + 1)}{q^{2x} + 15D_1 - 3}y = \frac{e^{2x} - 4x + (e^{x} - e^{x} + 1)}{q^{2x} + 15D_1 - 3}y + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x} - e^{x} + 7}{q} + 11.$$

$$(qD_1^2 + GD_1 - 3)y = \frac{e^{2x}$$

P·I₁ =
$$\frac{1}{q}$$
 $\frac{1}{q \times x^2 + 6 \times 2 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{36 + 18 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{36 + 18 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ e^{2Z}

= $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 6 \times 1 - 3}$ $\frac{1}{q}$ $\frac{1}{q \times 1^2 + 3}$ $\frac{1}{q}$ $\frac{1$

Non- Pen'odic functions The following functions (Fix)=k. (i) $\Gamma(x) = \int 1, x is rational$ is irrational orthogonalty of sine and cosine functions The collection of linearly independent functions. $\{1, \cos \pi x\}$ $\cos 2\pi x$ $\cos 3\pi x$... $\sin \pi x$ Sin atta sin 3tta, 2 Form what is called a matually softhogonal set of functione. In this case of functions we say that the two functions f(x) & g(x) are orthogonal in an intervel [a,b] wif If(a) g(a) dx =0 where the above set of linearly independent functions are analogous to a mutually In set of vectors in vector analysis set of function is called Mutually orthogonal if each o distinct pair of functions is orthogonal. thus, the above collections of sine of cose no term torne a mutually or thogonal gret of function of the closed (CEC+2L) where ci's any contan a) $\int_{C} \cos\left(\frac{m\pi x}{L}\right) \cos\left(\frac{n\pi x}{L}\right) dx = \int_{C} 0, m \neq n$ Cos(mox) Sin(nox) da = 0 + man

 $\int_{C} sin\left(\frac{m\pi x}{L}\right) sin\left(\frac{n\pi x}{L}\right) dx = \begin{cases} 0, m \neq n \\ L, m = n \\ 0, m = n = 0. \end{cases}$

Trignometric series

A series of the form.

aota, cos x + bisinx+a2(05x + b28inx.

(0) a + a, cosxt bisinx + a2 (052)(+ b2 51n2x +a3 (053)x+b.

are called a trignometric series.

The above series with a desired range of values or intervels are called fourier series.

ul 2/16 Direchlets conditions

That are sufficient for a function f(x) to have a fourier series represent the directed conditions are

Ofca) is periodic and finit

Of (n) has finite number of discontinuity in any one period.

(3) f(x) has at the most a finite num maxima and minima in any one

Fourier Series and Exelus's Formula
A series of the form from any

 $f(a) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi \cdot z}{L}) + \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi \cdot z}{L})$ where a, an and by one fourier welficient (OZ X Z Z L) Euler's Formula (C < x < c+2L) The coefficient as an and by are determine by Eules's formula, with term by term intergration and with the help of orthogonality of sine and cosine terms. Here we are simply integrating the 1 with respect to a from 'C' to C+all' $= \frac{a_0}{2} \int d\mathbf{I} + a_0 \int \frac{d\mathbf{I}}{\mathbf{E}} \cos\left(\frac{n\pi a}{L}\right) + b_0 \int \int \sin\left(\frac{n\pi a}{L}\right)$ $\frac{a_0}{2} \left[x \right]_c^{(42L)} + a_0 x_0 + b_0 x_0.$ $f(x)dx = \frac{a_0}{2} \times [c+2L - c]$ = 00 x 2'L a. = 1 5 f (x) dx. the an multiply () throughout To find

 $\int f(x) dx \cdot \cos \frac{m\pi x}{L} dx = \frac{a_0}{a} \int \frac{\cos(k\pi x)}{L} \cos \frac{m\pi x}{L} dx +$ and E cospital cos (mrx) dx ton SE sin (mrx). = f(x)do cos (m/x) dx = a xo + anx L +bnxo $\frac{1}{L} \int f(x) \cos\left(\frac{m\pi x}{L}\right) dx. \quad \left(m = n = 1\right)$ since € 'm' is kept fixed and n'oranges over the tre integers, if follows from the orthogonality condition that ma=m for all ton ic, $an = \frac{1}{L} \int f(x) \left(\cos \frac{n\pi x}{L} \right) dx$

Here we are multiplying, the 1 throughout!

Sin (m x) and integrating w. r. to x'

from c to chal

if f(nc) Sin (m x) dz = ao (Sin (m x)) dx +

c chal

an (sog (n x)) sin (m x) + bon (Sin (m x)) - Sin (m x) o

20

Sin (mitz) dx = ab v of anxo + bn x L (1) Sin(max) dx Lbn. Here m=n as in the case of an du to mutually orthogonality condition. bn = [fex) sin(tax) dx a series having the *The fourier series, is periodicity at or all CZXZZC+2L COO 0 CN Z 2L C=-L -L /x Z L Particular Cases (a) If f(x) is a periodic function of periodic defined in -L-> 2L [-L, 2L] which is obtained by P=-L in the interval [G, C+2L] in this case the Tourier series of f(x) is given by $f(x) = \frac{a_0}{a} + \sum_{n=1}^{\infty} a_n \left(o\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} b_n \left(\sin \frac{n\pi x}{L}\right)\right)$ and the Eula's Formula are given by

$$a_{h} = \frac{1}{L} \int_{L}^{L} f(x) dx.$$

$$a_{h} = \frac{1}{L} \int_{L}^{L} f(x) dx.$$

$$(b) f f(x) is a periodic function with period arrive, [c, c+air] is obtained by putting L=arrive, in [c>c+al]. In this case the fourte, a series of $f(x)$ is given by $f(x)$

$$f(x) = \frac{a}{2} + \sum_{n=1}^{\infty} a_{n} \cos(nx) + \sum_{n=1}^{\infty} b_{n} \sin(nx) e^{2nx}.$$

$$a_{n} = \frac{1}{L} \int_{L}^{L} f(x) dx.$$

$$a_{n} = \frac{1}{L} \int_{L}^{L} f(x) \sin(nx) dx.$$

$$b_{n} = \frac{1}{L} \int_{L}^{L} f(x) \sin(nx) dx.$$$$

(c) If we put $C = -\pi$ in $C \rightarrow c + 2\pi$ ie, then f(x) become a peniodic function of peniod $2\pi'$ defined in $-\pi \rightarrow \pi$. Then, the fourier levies is given by.

$$f(x) = \frac{\alpha_0}{\alpha} + \sum_{n=1}^{\infty} a_n (os(nx)) + \sum_{n=1}^{\infty} b_n sin(nx)$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx.$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) cos(nx) dx.$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) sin(nx) dx$$

```
Dirichlet's Theokem.
     fixe is continuous then it converge to fex),
    fix) is discontinuous at a point or, thon
      fourier series converges to the average
     the right and left hand limits
 function fix), ab a. ie, the Fourier series
                to f(x;) + f(x;)
1) find the Fourier sen'es for the two periodic
  functions fix) fo, -12x20 -L<x<0
                      (1, 0 < 0 < 21 -> 0 < 2 < L
                                                     [-L, L]
 By Gulas formula.
                                                    2 L = 2
  we have
    a_0 = \frac{1}{1} \int_{-1}^{1} f(x) dx
  a_0 = \frac{1}{1} \int f(x) dx = 1 \left[ \int \frac{f(x)}{x} dx + \int \frac{f(x)}{x} dx \right]
                       = 1 \left[ x \right]_{0}
                                             => :.a = 1
   a_n = \frac{1}{L} \int f(x) \cos\left(\frac{n\pi x}{L}\right) dx
   an = \frac{1}{1} \int f(x) \cos\left(\frac{n\pi x}{2}\right) dx.
         = 1 [ soxos/nTX)dx + s 1 cos(nTX)dx.
                                                       Sin nIT=0
         = Sin nix
          \frac{1}{n\pi} \sin n\pi - \sin n = \frac{1}{n\pi} \sin \pi = \frac{1}{m\pi} \cos n = \frac{1}{n\pi}
```

bn :
$$\frac{1}{L} \int_{L}^{R} f(x) \sin \left(\frac{n\pi x}{L} \right) dx$$

i bn = $\frac{1}{L} \int_{L}^{R} f(x) \sin \left(\frac{n\pi x}{L} \right) dx$

= $\frac{1}{L} \int_{L}^{R} f(x) \sin \left(\frac{n\pi x}{L} \right) dx$

= $\frac{1}{L} \int_{L}^{R} f(x) \sin \left(\frac{n\pi x}{L} \right) dx$

= $\frac{1}{L} \int_{L}^{R} f(x) \sin \left(\frac{n\pi x}{L} \right) dx$

= $\frac{1}{L} \int_{L}^{R} f(x) \sin \left(\frac{n\pi x}{L} \right) dx$

= $\frac{1}{L} \int_{L}^{R} f(x) dx$

i our former series,

$$f(x) = \frac{a_0}{a} + \sum_{n=1}^{R} f(n) \cos \left(\frac{n\pi x}{L} \right) + \sum_{n=1}^{R} f(n) \sin \left(\frac{n\pi x}{L} \right) dx$$

i our former series,

$$f(x) = \frac{a_0}{a} + \sum_{n=1}^{R} f(n) \cos \left(\frac{n\pi x}{L} \right) + \sum_{n=1}^{R} f(n) \sin \left(\frac{n\pi x}{L} \right) dx$$

$$f(x) = \frac{1}{L} + \sum_{n=1}^{R} f(n) \cos \left(\frac{n\pi x}{L} \right) + \sum_{n=1}^{R} f(n) \sin \left(\frac{n\pi x}{L} \right) dx$$

$$f(x) = \frac{1}{L} + \sum_{n=1}^{R} f(n) \cos \left(\frac{n\pi x}{L} \right) + \sum_{n=1}^{R} f(n) \sin \left(\frac{n\pi x}{L} \right) dx$$

$$f(x) = \frac{1}{L} + \sum_{n=1}^{R} f(n) \cos \left(\frac{n\pi x}{L} \right) + \sum_{n=1}^{R} f(n) \sin \left(\frac{n\pi x}{L} \right) dx$$

$$f(x) = \frac{1}{L} + \sum_{n=1}^{R} f(n) \cos \left(\frac{n\pi x}{L} \right) + \sum_{n=1}^{R} f(n) \sin \left(\frac{n\pi x}{L} \right) dx$$

$$f(x) = \frac{1}{L} \int_{0}^{R} f(x) dx$$

any Here the given problem lies in the interval $\int_{0}^{R} f(x) dx$

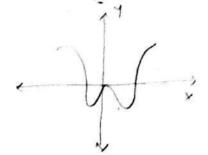
Monday

Even and odd Functions.

. A real valued function f(x) is said to be even is f(x) = f(x). The graph of an even function is symmetoical about the year's

Example:

 α^2 , $|\alpha|$, $\cos \alpha$ etc.



of real valued function is said to be odd. if f(-x) = -f(x). The graph of an odd function is symmetrical about the oxigin.

Example:

Note:

- even.
- a. The product of two odd functions are also even.
- 3. The product of an even and odd function is odd.

* sonstant is defined by f(x) = k, where k' is a constant is an even function.

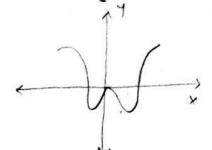
1 : TI + x² is an even function (ie, x² is even tis constant, so that also even. Monday

Even and odd Functions.

. A real valued function f(x) is said to be even is f(x) = f(x). The graph of an even function is symmetrical about the yaxis

Example:

 x^2 , $|\alpha|$, $\cos \alpha$ etc.



of real valued function is said to be odd.

if f(-x) = -f(x). The graph of an odd function

if f(-x) = -f(x) the graph of an odd function

is symmetrical about the oxigin.

Example:

Note:

- 10 The product of two even functions are even.
- a. The product of two odd functions are also even.
- 3. The product of an even and odd function is odd.

Example.

If is defined by f(x) = k, where k' is a constant is an even function.

1 : TI + x² is an even function (ie, x² is even to is constant, so that also even.

- e^{x^2} is an even. So e^{x^2} is also an even function.
- 3) $x + x^2$, $x + x^2$ is neither odd nor ever
- 4) ex \$ log a.

ex \$ logx are neither odd non even.

- f) f(x) is an even function, thon

 5) f(x). cosnx is even.
- f(x). sin no.

 80, f(x). sin no is odd.
- So, f(x)-sinnx is an even fanction.
- 8) If f(x) is an odd function, then f(x). cosn; : f(x). cosnx is an odd function.

Properties of even and odd functions.

If f(x) is an even function, then $\int_{-\epsilon}^{\epsilon} f(x) dx = 2 \int_{0}^{\epsilon} f(x) dx.$

of f(x) is an odd function, then $\int f(x) dx = 0$

* It of (x) an even flortion, then [-r, c]

a. I $\int f(x) dx$. [Clearly this is a Fourier cosine series]

Similarly, $a_n = \frac{1}{c} \int f(x) \cos(\frac{n\pi x}{c}) dx$. $\frac{R}{c} \int f(x) dx$ $\frac{R}{c} \int f(x) \cos(\frac{n\pi x}{c}) dx$ $bn = \frac{1}{c} \int_{-c}^{c} f(x) \cdot \sin(\frac{n\pi x}{c}) dx$ = 0

Note:

If f(x) is an even function, then a and and an will exist and bn will vanished.

Similarly, is on odd function in the interval [-c,c] $a_0 = \frac{1}{C} \int_{C} f(x) dx = 0$ [clearly this is a and a = $\frac{1}{C} \int_{C} f(x) dx = 0$ Fourier sine Series] $a_0 = \frac{1}{C} \int_{C} f(x) \cdot \cos \left(\frac{n\pi x}{C}\right) dx = 0$ $a_0 = \frac{1}{C} \int_{C} f(x) \cdot \sin \left(\frac{n\pi x}{C}\right) dx = 0$ $a_0 = \frac{1}{C} \int_{C} f(x) \cdot \sin \left(\frac{n\pi x}{C}\right) dx = 0$ $a_0 = \frac{1}{C} \int_{C} f(x) \cdot \sin \left(\frac{n\pi x}{C}\right) dx = 0$

Note:

If f(x) is odd, then as and an will vanished and by will exist.

Auniton in the interval f(x)?

If f(x) is even a then the fourier series become f(x). $f(x) = \frac{a_0}{a} + \sum_{n=1}^{\infty} a_n \cos n \pi c$

If fix) is an odd function in the interval Le, established then the fourier series.

Problem
$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{c}\right)$$

1) Represent the function F(x)= xe2, as a form Fourier series in the interval (-11, 11) and shown that

$$(4) \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

(a)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{3^2} = \frac{17^2}{18}$$

$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{11^2}{8}$$

ans: Here the function $f(x) = x^2$ is an even function.

Here a fan will exist and bn' will vanish.

So,
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
.

=
$$\frac{2}{\pi}\int_{0}^{\pi}f(x)dx$$

Similarly
$$\pi$$
 $= \frac{2}{\pi} \left(\frac{x^3}{3}\right)_0^{\pi} = \frac{2}{\pi} \frac{\pi^3}{3} = \frac{2\pi^2}{3}$

Surda =

uv, - u'v2+4

 $a_n = \frac{1}{\pi t} \int_{-\pi}^{\pi} f(x) \cdot \cos\left(\frac{n\pi t}{x}\right) dx$

=
$$\frac{1}{\pi} \int_{0}^{\pi} f(x) (\cos(nx)) dx$$
.

$$= \frac{2}{\pi} \int x^2 \cdot (os (nx)) dx.$$

$$\frac{1}{\pi} \left(x^{2} \cdot \frac{\sin nx}{n_{0}} - \left(2x \cdot x - \frac{\cos nx}{n^{2}} \right)^{\frac{1}{2}} + \left(2x - \frac{\sin nx}{n^{3}} \right)^{\frac{1}{2}} \right) \\
= \frac{2}{\pi} \left(x^{2} \cdot \frac{\sin nx}{n} \right)^{\frac{1}{2}} + \left(2x \cdot \frac{\cos nx}{n^{2}} \right)^{\frac{1}{2}} - \left(2 \cdot \frac{\sin nx}{n^{3}} \right)^{\frac{1}{2}} \\
= \frac{2}{\pi} \left(x^{2} \cdot \frac{\sin (n\pi)}{n} \right) + \left(2x \cdot \frac{\cos nx}{n^{2}} \right)^{\frac{1}{2}} - \left(2x \cdot \frac{\sin nx}{n^{3}} \right)^{\frac{1}{2}} \\
= \frac{2}{\pi} \left(x^{2} \cdot \frac{\sin (n\pi)}{n} - 0x \cdot \sin 0 \right) + \left(2x \cdot \frac{\cos nx}{n^{2}} \right) + \left(2x \cdot \frac{\sin nx}{n^{3}} \right)^{\frac{1}{2}} \\
= \frac{2}{\pi} \left(2x \cdot \frac{\sin (n\pi)}{n} - 0x \cdot \sin 0 \right) + \left(2x \cdot \frac{\sin nx}{n^{2}} \right) - \left(2x \cdot \frac{\sin nx}{n^{3}} \right) - \left(2x \cdot \frac{\sin$$

$$\pi^{2} = \frac{\pi^{2}}{3} + 4 \left[\frac{(-1)^{n}}{n^{2}} \right] \Rightarrow even \qquad \text{where}$$

$$\pi^{2} = \frac{\pi^{2}}{3} + \left\{ 4 \left[\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} \right] \right\}$$

$$\pi^{2} - \frac{\pi^{2}}{3} = 4 \left[\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}} \right]$$

$$\frac{2\pi^{2}}{3} \times \frac{1}{4} = \left[\frac{1}{1^{2}} + \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{3^{2}}$$

$$\left[\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} \cdot \cdot \cdot\right] + \left[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdot \cdot\right] = \frac{\pi^2}{12} + \frac{\pi^2}{6}$$

and hence show that
$$\frac{1}{1^2} - \frac{1}{3^2} + \frac{1}{3^2} + \cdots = \frac{\pi^2}{18}$$

and hence show that
$$\frac{1}{12} - \frac{1}{12} + \dots = \frac{\pi^2}{12}$$

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx.$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} (x - x^2) dx.$$

$$= \frac{1}{\pi} \left[0 - a \int_{-\pi}^{\pi} f(x) dx \right]$$

$$= \frac{1}{\pi} \left[-a \left(\frac{x^3}{3} \right)_0^{\pi} \right]$$

$$= \frac{1}{\pi} \left[-a \left(\frac{x^3}{3} \right)_0^{\pi} \right]$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{(\pi \pi x)}{\pi} dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{(\pi \pi x)}{\pi} dx.$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{(\pi \pi x)}{\pi} dx.$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{(\pi x)}{\pi} dx.$$

$$= \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \cos \frac{(\pi x)}{\pi} dx.$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos \frac{($$

Then, Required Fourier series

$$\frac{1}{\pi} \left(\frac{1}{\pi} \cdot \frac{\sin n\pi}{n} - 0 \right) + \left(\frac{\partial \pi}{\partial \pi} \cdot \frac{\cos n\pi}{n^2} - 0 \right) \cdot \left(\frac{\partial x}{\partial x} \cdot \frac{\sin n\pi}{n^2} \right) \cdot \frac{\partial x}{\partial x} \cdot \frac{\partial \pi}{\partial x} \cdot \frac{\partial \pi}{$$

$$(x-x^{2})^{2} = \frac{1}{\alpha} \left(\frac{-\alpha}{3} \pi^{2}\right) + \frac{\alpha}{n_{2}} \left(-\frac{1}{3} \pi^{2}\right) + \frac{\alpha}{n_{2}} \left(-\frac{1}$$

$$0 = -\frac{\pi^{2}}{3} - 4 \sum_{h=1}^{\infty} \frac{(-1)^{h}}{n^{2}} (os(nx0) - 2 \sum_{h=1}^{\infty} \frac{(-1)^{h}}{n^{2}} sin(nx0)$$

$$0 = -\frac{\pi^{2}}{3} - 4 \sum_{h=1}^{\infty} \frac{(-1)^{h}}{h^{2}}$$

$$0 = -\frac{\pi^{2}}{3} - 4 \left[\frac{(-1)}{1^{2}} + \frac{1^{2}}{2^{2}} - \frac{1}{3^{2}} \right]$$

$$0 = -\frac{\pi^{2}}{3} - 4 \left[\frac{(-1)}{1^{2}} + \frac{1^{2}}{2^{2}} - \frac{1}{3^{2}} \right]$$

$$-\frac{\pi^{2}}{12} = -4 \left[-\frac{1}{1^{2}} + \frac{1^{2}}{2^{2}} - \frac{1}{3^{2}} \right] - \frac{\pi^{2}}{12} + \frac{1}{1^{2}} = \frac{1}{3^{2}} + \frac{1}{3^{2}} = 0$$

$$\frac{1}{1^{2}} - \frac{1}{3^{2}} + \frac{1}{3^{2}} - \cdots = \frac{\pi^{2}}{19}.$$

3) obtain the fourier series of f(x) = |x| in the interval $(-\pi, \pi)$. Hence show that $\sum_{n=1}^{\infty} \frac{1}{(an-1)^2} = \frac{\pi^2}{8}$ and $\frac{1}{(an-1)^2} = \frac{1}{8}$

 $f(-x) = f(x) \Rightarrow f(x)$ is even. Since f(x) is even an exist, bn = 0 $a_0 = \frac{1}{T} \int_{-\pi}^{\pi} f(x) dx$.

$$= \frac{1}{\pi} \frac{\partial}{\partial x} \propto dx$$

$$= \frac{1}{\pi} \frac{\partial}{\partial x} \left(\frac{x^2}{2} \right)^{\frac{1}{2}}$$

$$= \frac{1}{\pi} \frac{\partial}{\partial x} \left(\frac{x^2}{2} \right)^{\frac{1}{2}}$$

$$= \frac{1}{\pi} \frac{\partial}{\partial x} \left(\frac{x^2}{2} \right)^{\frac{1}{2}}$$

$$= \frac{1}{\pi} \frac{\partial}{\partial x} \left(\frac{x^2}{2} \right)^{\frac{1}{2}} \left(\frac{x^2}{2} \right) \left(\frac{x^2}{2} \right)^{\frac{1}{2}}$$

$$= \frac{1}{\pi} \frac{\partial}{\partial x} \left(\frac{x^2}{2} \right)^{\frac{1}{2}} \left(\frac{x^2}{2} \right) \left(\frac{x^2}{2} \right)^{\frac{1}{2}} \left(\frac{$$

25/2/16

The fourier series.
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(n\alpha)$$

$$= \frac{\pi}{2} + \sum_{n=1}^{\infty} \left(\frac{-1}{n^2}\right) \cos(n\alpha) \left(\frac{1}{x} \cos(n\alpha)\right)$$

Find the Fourier series of the function
$$f(x)=x$$
 in the sange $-\pi \times x \times \pi$ and here show that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$

Ther given function $f(x) = \infty$ is an odd function is the interval (-11, 11)

$$bn = \frac{1}{\pi} \int f(x) \, dx \, (nx) \, dx$$

proneckes formus oc sinhx)ds. Ju v dx = uy, - u'vz+u"y $\frac{\partial}{\partial t} \left(\frac{\partial x}{\partial x} - \frac{\cos nx}{\cos nx} \right) - \left(\frac{1}{n^2} x - \frac{\sin nx}{n^2} \right)^{\frac{1}{n}}$ $\frac{A}{a} - \left(\frac{p}{p} \left(\frac{p}{2(\log p)} \right) + \left(\frac{p}{2(\log p)} \right) \right)$ # " - (TT COSPIT - 10) + (SIN NIT - SIN 0) $\frac{-2}{\pi} \times \frac{\pi}{n} = \frac{-a \in \Pi^n}{n}$ i. The Fourier series f(x)= the & bn Sin (nx) Singo= $x = \sum_{n=1}^{\infty} \frac{-2 \cdot (-1)^n}{n} \sin (nx)$ putting == II & expanding (-11(-1), 2 $\frac{\pi}{2} = \frac{2}{N} \left(\frac{1}{2} \right) \frac{(-1)^{n+1}}{N} \sin n \frac{\pi}{2}$ (-2)(-1)2 亚= +2 [1-13+1-] sin nx; x=T nol, Sin W/2=0 亚二星五十分---122, Sin T > C

purely this is

Fourier Casine Series [-4,4] If f(x) is an even function defined in the intervel (-L, L), then f(x). cos (DTTX) is an even function and f(x). sin (nTx) is an odd function. Then by Deules Formula, $a_o = \frac{2}{L} \int f(x) dx.$ $a_n = \frac{2}{L} \int f(x) \cos\left(\frac{n\pi x}{L}\right) dx$ and bn = 0Thus the fourier series fix) is reduces to $f(x) = \frac{a_0}{a} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right)$ adalle Fourier Sine Series [-L, L] Let f(x) be an odd function in the interval [-L, L] then fcx) cos(nTx) is an odd function and then by Deuter's formula $a_0 = 0$, $a_n = 0$ and $bn = \frac{2}{L} \int f(x) \sin(\frac{n\pi x}{L}) dx$, and the Corresponding Fourier e series reduces to $F(x) = \sum_{n=0}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$ *Fourier cosine series [-17, 17] Let f(x) be an even function in the interval Thun F(x): (os n(x) \neq 's an even $\int \frac{n\pi x}{L} \rightarrow nx$) function. and F(x). Sin(nx) is an cosine > even function odd function.

```
Then By Oculer's formula,
      a_0 = \frac{2}{\pi} \int_{F(x)}^{\pi} dx
       a_n = \frac{a}{\pi} \int f(x) \cos(nx) dx
       bn = 0
     Then the fourier series, fix) reduces to
      F(x) = \frac{a_0}{a} + \sum_{n=0}^{\infty} a_n \cos nx
   Let fox) be an odd function in the interv
    [-IT, IT] then f(x). (os(nx) is an odd function
     and f(x) sinfox) is an even function. Then by
    Deuler's Formula a = 0, an=0 and
     bn = \frac{\partial}{\partial x} \int f(x) \cdot \sin(hx) dx. Then the Founer
            of fex) reduces to the form
        F(\alpha) = \sum_{n=1}^{\infty} b_n \sin(n\alpha)
 5) obtain the fourier series f(x) = |\sin x|
            interval -TLXLT
ans: f(x)= 18:0x1
    f(x) = |\sin(x)| = |-\sin(x)| = |\sin x|
                                                 Sin (=x)=Si
                                 = f(x)
                                                  (os-x=0
                   function is even.
     since f(x) is an eventuation | sinx = sinx (0
     fexii bn = 0.
```

$$a_{0} = \underbrace{a}_{1} \int_{0}^{\pi} f(x) dx.$$

$$= \underbrace{a}_{2} \int_{0}^{\pi} f(x) dx.$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(- -cos o + cos o \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(- -cos o + cos o \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(- -cos o + cos o \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(- -cos o + cos o \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(- -cos o + cos o \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(os \pi + cos \pi) \left(-(a + 1) \right) \right)$$

$$= \underbrace{a}_{1} \left(-(a + 1) \right) \left(-(a + 1) \right)$$

$$= \underbrace{a}_{1} \left(-(a + 1) \right) \left(-(a + 1) \right) \left(-(a + 1) \right)$$

$$= \underbrace{a}_{1} \left(-(a + 1) \right) \left(-(a + 1) \right)$$

$$= \underbrace{a}_{1} \left(-(a + 1) \right) \left(-(a + 1) \right)$$

$$= \underbrace{a}_{1} \left(-(a + 1) \right) \left$$

$$= \frac{1}{\Pi} \left(\frac{-\cos(Hn)x}{1+n} \right)^{\frac{1}{2}} + \left(\frac{-\cos(Hn)x}{1-n} \right)^{\frac{1}{2}} \right)$$

$$= \frac{1}{\Pi} \left(\frac{\cos(Hn)T}{1+n} - \frac{\cos(Hn)x}{1+n} \right)^{\frac{1}{2}} + \left(\frac{\cos(Hn)x}{1-n} \right)^{\frac{1}{2}} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{1+n}}{1+n} - \frac{1}{1+n} \right) + \left(\frac{(-1)^{1-n}}{1-n} - \frac{1}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{1+n}}{1+n} + \frac{1}{1-n} \right) + \left(\frac{(-1)^{1-n}}{1+n} - \frac{1}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{1+n}}{1+n} + \frac{(-1)^{2-n}}{1-n} \right) + \left(\frac{1}{1+n} + \frac{1}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} \right) + \left(\frac{1}{1+n} + \frac{1}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} \right) + \left(\frac{1}{1+n} + \frac{1}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} \right) + \left(\frac{1}{1+n} + \frac{1}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} \right)$$

$$= \frac{1}{\Pi} \left(\frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1-n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n} + \frac{(-1)^{n}}{1+n}$$

Now, we are going to find, a separately in
$$a_1 = \frac{1}{\pi} \int f(x) (os (\frac{1}{2}x) dx$$
. $n=1$

$$= \frac{2}{\pi} \int \sin x (os (\frac{1}{2}x) dx$$

$$= \frac{1}{\pi} \int \cos x (os (\frac{1}{2}x) dx$$

$$= \frac{1}{\pi} \int \cos x (os x) dx$$

$$= \frac{1}{\pi} \int \cos x dx$$

$$= \frac{1}{\pi} \left[\frac{-\cos x}{2} \right]^{\pi}$$

$$= \frac{1}{2\pi} \left[\frac{-\cos x}{2} \right]^{\pi}$$

Fourier series expansion for the given funda. $f(z) = \frac{a_0}{2} + \frac{\alpha}{n-1} \sum_{n=1}^{\infty} a_n \cos(nx) dx$ $1\sin(x) = \frac{4}{a\pi} + \sum_{n=2}^{\infty} \frac{a(t_1)^n + 1}{\pi(1-n^2)} \cos(nx)$

$$f(x) = \frac{do}{2} + \sum_{n=1}^{\infty} a_n \cos(n\pi)$$

$$|\cos x| = \frac{4}{2\pi} + \sum_{n=1}^{\infty} \frac{4\cos(n\pi)}{\pi^{-1}(1-n\pi)} \cos(nx)$$

$$|\cos x| = \frac{2}{\pi} + \sum_{n=1}^{\infty} \frac{4\cos(n\pi)}{\pi^{-1}(1-n\pi)} \cos(nx)$$

$$|\sin x| \cos(n\pi)$$

$$|\cos x| = \frac{2}{\pi} + \sum_{n=1}^{\infty} \frac{4\cos(n\pi)}{\pi^{-1}(1-n\pi)} \cos(nx)$$

$$|\sin x| \cos(n\pi)$$

$$|\cos x| \cos(n$$

Mote:

If the given nearge is (-L, L) the formula is same and the limits of integration will change to (-L, L)

Change to (-L, L)

(Fourier cosmanie)

When fex) is achieven, house ven, odd-Focares

Swear

then bn = 0.

The Fourier Series is
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{(n\pi x)}{L}$$

$$\therefore a_0 = \frac{2}{L} \int_{-L}^{L} f(x) dx.$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cdot \cos(n\pi x) dx$$

where $a_n = 0$

$$40 a_n = 0$$

$$bn = \frac{\partial}{\partial L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

then the fouriers series $f(x) = \frac{2}{L} \int_{h=1}^{\infty} bn \sin(\frac{n\pi x}{L}) dx.$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n (os(n \infty) + \sum_{n=1}^{\infty} b_n sin(n x))$$
where

where
$$a_0 = \frac{1}{\pi} \int_{0}^{\pi} f(x) dx$$
.

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot (\cos(nx)) dx$$
.

$$bn = \frac{1}{\pi} \int_{0}^{\infty} f(x) \cdot \sin(nx) dx$$
.

Note: If f(x) is given in the entervel $(-\Pi, \Pi)$ then the formula's are same as above and the limits of integration are changed $(-\Pi, \Pi)$

$$\frac{n\pi x}{l} \rightarrow nx$$

when $f(\infty)$ is equal to moven function. then bn = 0. # $a_0 = \frac{2}{\pi} \int f(\alpha) d\alpha$.

 $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos(nx) dx$

Then the founder series,

 $f(x) = \frac{a_0}{a} + \sum_{n=1}^{\infty} a_n Cos (nx)$

e whom fex) is equal to an odd franchion

 $bn = \frac{a}{\pi} \int_{0}^{\infty} f(x) \cdot \sin(\theta x) dx.$

 $F(x) = \sum_{n=1}^{\infty} b_n \sin(nx) dx$

ant.

1) Obtain the Fourier series expansion forth function $f(x) = \pi - \frac{1}{2}$ in $0 \le x \le 2$.

ant. $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \left(\frac{\cos n\pi x}{L} \right) + \sum_{n=1}^{\infty} b_n \cdot \sin \left(\frac{n\pi x}{L} \right) dx$

[a., an, bn > greaters constants]

$$a_{n} = \frac{1}{1} \int_{0}^{1} f(x) dx$$

$$= \frac{1}{1} \int_{0}^{1} \frac{\pi - x}{2} dx.$$

$$= \frac{1}{2} \left(\pi(x)^{2k} - \left(\frac{2^{2}}{2} \right)^{2k} \right)$$

$$= \frac{1}{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right)$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} - \frac{2^{2k}}{2} \right) dx.$$

$$= \frac{1}{2} \int_{0}^{2} \left(\pi(x)^{2k} -$$

$$a_{n} = 0$$

$$b_{n} = \frac{1}{L} \int_{0}^{2} f(x) \cdot \frac{s^{2} n(n\pi x)}{L} dx.$$

$$= \frac{1}{2} \int_{0}^{2} (\pi - x) \cdot \frac{s^{2} n(n\pi x)}{L} dx.$$

$$= \frac{1}{2} \int_{0}^{2} (\pi - x) \cdot \frac{s^{2} n(n\pi x)}{L} dx.$$

$$= \frac{1}{2} \int_{0}^{2} (\pi - x) \cdot \frac{s^{2} n(n\pi x)}{L} dx.$$

$$= \frac{1}{2} \left[(\pi - x) \cdot \frac{s(s n\pi x)}{n\pi} \right]_{0}^{2} - (-1x \cdot \frac{s^{2} nn\pi x}{n^{2}\pi^{2}})_{0}^{2}$$

$$= \frac{1}{2} \left[(\pi - x) \cdot \frac{(s (n\pi x))^{2}}{n\pi} + \frac{(s \cdot n\pi x)}{n^{2}\pi^{2}} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}} \right]_{0}^{2}$$

$$= \frac{1}{2} \left[(\pi - a) \cdot \frac{(s \times n\pi x)}{n\pi} + \frac{(\pi - a)}{n\pi} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}} \right]_{0}^{2}$$

$$= -\frac{1}{2} \left[(\pi - a) \cdot \frac{1}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{(s \cdot n\pi x)}{n^{2}\pi^{2}} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= -\frac{1}{2} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= -\frac{1}{2} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= -\frac{1}{2} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= -\frac{1}{2} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n^{2}\pi^{2}}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n\pi}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n\pi}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n\pi}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n\pi}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n\pi}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n\pi}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{s^{2} nn\pi x}{n\pi}$$

$$= \frac{1}{n\pi} \left[\frac{\pi - a}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{1}{n\pi} \left[\frac{nn\pi x}{n\pi} - \frac{1}{n\pi} \right]_{0}^{2} + \frac{1}{n\pi} \left[\frac{nn$$

$$bn : \frac{1}{1} \int f(x) \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} f(x) \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \sin(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \sin(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx + \int_{0}^{1} a \cos(\frac{n\pi x}{1}) dx$$

$$= \frac{1}{1} \int_{0}^{1} 1 \cos(\frac{n\pi x}{1}) dx$$

$$f(x) = \frac{3}{a} + \sum_{n=1}^{\infty} o \times Cos(n\pi x) + \sum_{n=1}^{\infty} \left(\frac{(-1)^{n}}{n\pi}\right) s_{in} \left(\frac{n\pi x}{1}\right)$$

$$f(x) = \frac{3}{2} + \frac{8}{n\pi} \left(\frac{(-1)^n - 1}{n\pi} \right) \sin(n\pi x)$$

3) If
$$f(x) = (\pi - x)^2$$
, o to 2π , show that

HIW. $f(x) = \frac{\pi^2}{12} \left(\frac{2\pi}{2}\right)^2$, o to 2π , show that

4) Obtain the fourier series of $f(x) = e^{-x}$, ocx

any

4) obtain the fourier series of
$$f(x) = e^{-x}$$
, $o \le x \le 2\pi$

a.

$$= \frac{1}{17} \int_{0}^{2\pi} e^{-x} dx$$

$$= \frac{1}{17} \int_{0}^{2\pi} e^{-x} dx$$

$$= \frac{1}{\pi} \left(-e^{-\chi} \right)_{0}^{2\pi}$$

$$= \frac{-1}{\pi} \left(e^{-2\pi} - e^{-6} \right).$$

$$= \frac{(1 - e^{-2\pi})}{\pi} = \frac{1}{8}$$

$$a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cdot \cos(nx) dx$$

=
$$\frac{1}{11} \int_{0}^{\infty} e^{-x} \cdot \cos(nx) dx$$

$$= \frac{1}{11} \left[\frac{e^{-\chi}}{(-1)^2 + n^2} \cdot (-\cos(n\chi) + n\sin(n\chi)) \right]^{\frac{21}{11} + 1} = \frac{1}{n}$$

=
$$\frac{11}{11} \left[\frac{e^{-x}}{1^2 + n^2} \cdot \left[\cos nx + n \sin nx \right] \right]^{2\pi}$$

$$\frac{1}{1!} \left[\left(\frac{e^{-2iT}}{e^{2in}} + \frac{e^{-2iT}}{e^{2in}} + \frac{e^{-2iT}}{e^{2in}} + \frac{e^{-2iT}}{e^{2in}} \right) - \left(\frac{1}{1^2 + n^2} - 1 \right) \right]$$

$$\frac{1}{1!} \left[\left(\frac{e^{-2iT}}{1^2 + n^2} + \frac{1}{1^2 + n^2} \right) - \left(\frac{1}{1^2 + n^2} - 1 \right) \right]$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} + \frac{1}{1^2 + n^2} \right) - \frac{1}{1!} \left(\frac{1 - e^{-2iT}}{1^2 + n^2} \right)$$

$$= \frac{1}{1!} \left(\frac{1 - e^{-2iT}}{1^2 + n^2} \right) - \frac{1}{1!} \left(\frac{1 - e^{-2iT}}{1^2 + n^2} \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)^{2iT}$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right) - \left(\frac{e^{-0}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left(-\sin n\pi - n\cos n\pi \right) \right)$$

$$= \frac{1}{1!} \left(\frac{e^{-2iT}}{1^2 + n^2} \left($$

$$F(x) = \frac{a_0}{a} + \sum_{n=1}^{\infty} a_n \omega_6 f(x) + \sum_{n=1}^{\infty} b_n s(nx)$$

$$F(x) = (1 - e^{-2\pi})$$
 $+ \frac{\infty}{2\pi}$
 $+ \frac{1 - e^{-2\pi}}{\pi(1^2 + n^2)} + \frac{n(1 - e^{-2\pi})}{1^2 + n^2}$
 $+ \frac{1}{1^2 + n^2} + \frac{n(1 - e^{-2\pi})}{1^2 + n^2}$

$$\frac{1}{1:3} - \frac{1}{3:5} + \frac{1}{5.7} - \frac{1}{7.9} = \frac{17-2}{4}$$

ary.

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

$$a_0 = \frac{1}{\pi} \int_0^2 f(x) dx$$

$$= \frac{1}{\pi} \int_{0}^{2\pi} x \sin x \cdot dx.$$

$$=\frac{1}{\pi}\left(\left(x.-\cos x\right)^{\frac{2\pi}{3}}-\left(1*Sinil\right)^{\frac{2\pi}{3}}\right)$$

$$= \frac{-2x+\sqrt{1}}{x+1} = \frac{-2}{x+1}$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{2\pi} f(x) \cdot \cos(nx) dx$$

$$\frac{1}{2\pi\pi} \left[\int_{0}^{2\pi} x \cdot \sin(\pi n) x \, dx + \int_{0}^{2\pi} x \cdot \sin(\pi n) x \, dx \cdot . \right]$$

$$= \frac{1}{2\pi\pi} \left[\left(\frac{1}{\pi} x \cdot \frac{\cos((1+n)x)}{(1+n)^{2}} \right)^{2\pi} - \left(\frac{1}{\pi} x \cdot \frac{\sin((1+n)x)}{(1+n)^{2}} \right)^{2\pi} \right]$$

$$= \frac{1}{2\pi\pi} \left[\left(\frac{\cos((1+n)x)}{(1-n)^{2}} - 0 \right) + \left(\frac{\sin((1+n)x)}{(1+n)^{2}} - \frac{\sin(0)}{(1-n)^{2}} \right) + \left(\frac{\sin((1+n)x)}{(1+n)^{2}} - \frac{\sin(0)}{(1+n)^{2}} \right) \right]$$

$$= \frac{1}{2\pi\pi} \left(\frac{\cos((1-n)x)}{(1-n)} - 0 \right) + \left(\frac{\sin((1+n)x)}{(1+n)^{2}} - \frac{\sin(0)}{(1+n)^{2}} \right) + \left(\frac{\sin((1+n)x)}{(1+n)^{2}} - \frac{\sin(0)}{(1+n)^{2\pi}} \right) + \left(\frac{\sin((1+n)x)}{(1+n)^{2\pi}} - \frac{\sin(0)}{(1+n)^{2\pi}} \right) \right]$$

$$= \frac{1}{2\pi\pi} \left(\frac{1}{1+n} + \frac{1}{1+n} \right)$$

$$= -\frac{2}{1+n^{2}} \left(\frac{1}{1+n} + \frac{1}{1+n} + \frac{1}{1+n} \right)$$

$$= -\frac{2}{1+n^{2}} \left(\frac{1}{1+n} + \frac{1}{1+n$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} x \cdot \sin 2x \, dx \cdot \frac{1}{2\pi} = \frac{1}{2\pi} \left[(x \cdot -\frac{\cos 2\pi}{2})^{2\pi} - (1 \times -\frac{\sin 2x}{4})^{2\pi} \right]$$

$$= \frac{1}{2\pi} \left[-\left(2\pi \frac{\cos 2\pi}{2} - 0\right) + \left(\frac{\sin 2x + 2\pi}{4} - \sin 0\right) \right]$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} (\cos 2\pi - 0) + \left(\frac{\sin 2x + 2\pi}{4} - \sin 0\right) dx \cdot \frac{2\pi}{2\pi} \int_{0}^{2\pi} (\cos 4 - 8) \cdot (\cos 4 - 8)$$

$$\frac{1}{(1-n)^{2}} = \frac{1}{(1-n)^{2}}$$

$$\frac{1}{(1-n)^{2}} = \frac{1}{(1-n)^{2}}$$

$$\frac{1}{(1-n)^{2}} = \frac{1}{(1-n)^{2}}$$

$$\frac{1}{(1-n)^{2}} = \frac{1}{(1-n)^{2}}$$

$$\frac{1}{(n+1)} = \frac{1}{2\pi}$$

$$\frac{1}{(n+1)} = \frac{1}{2\pi}$$

$$\frac{1}{(n+1)} = \frac{1}{2\pi}$$

$$\frac{1}{(n+1)} = \frac{1}{2\pi}$$

$$\frac{1}{(n+1)} = \frac{1}{(n+1)}$$

$$\frac{1}{(n+1)} =$$

s/3/2016 Half Range Senies

saturday
* Half range cosine series

By solving partial differential equation we come
across with situation where we will have
to esepress the initial condition in terms of
sine and cosine series in a definite
interval of (o, c) where 'c' can be replaced either
by L 02 TT'

with the intial condition defined as an even function in the interval (-c, c), if we extend the function f(x) by reflecting about the yaxis (even function), i.e., f(-x) = f(x), then the extended function is an even function and bn = 0.

 $a_0 = \frac{2}{C} \int_{0}^{c} f(x) dx.$ $a_n = \frac{2}{C} \int_{0}^{c} f(x) (\cos \frac{m\pi x}{c}) dx.$

(ο, L) (ο,π)

bn = 0.

then the Fourier series fex) is corresponding to the half range cosine series become

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi n}{c}\right)$$

* Half range sine series

If we want a fourier sine series in the interval (o,c) we extend the function as an odd founction in the interval (-c,c). If we extend the

function by reflecting about the origin. So, that fex) = - f(x); then the extended function is odd for which,

$$a_0 = 0$$
 $a_n = 0$

$$bn = \frac{2}{c} \int_{c}^{c} f(x) \sin(\frac{n\pi x}{c}) dx$$

to the half range sine series be come

$$F(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi n}{c}\right)$$

1) Given the function, F(x) = x, OLXLITFind the halfrange cosine series of flx).

6) Find the balf range fourier sine series of fe

OR (a) Find the fouriers cosineseries of fox)

(1) Find the fourier sine series of flow).

I@ and I

ans: Hore we required to find a half nange cosine senies, ie, an even function in the interval (0, T) then, bn = 0a, = = f(x) doc.

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \int_{0}^{\infty} x \, dx.$$

$$= \frac{\partial}{\partial t} \int_{0}^{\infty} f(x) \cos \left(\frac{n\pi}{N}\right) dx.$$

$$= \frac{\partial}{\partial t} \int_{0}^{\infty} x \cdot \cos (nx) \, dx.$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{1}{x} - \frac{\cos (nt)}{n^{2}} \right)^{T} \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{1}{x} - \frac{\cos (nt)}{n^{2}} \right)^{T} \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{1}{x} - \frac{\cos (nt)}{n^{2}} \right)^{T} \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{1}{x} - \frac{\cos (nt)}{n^{2}} \right)^{T} \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{1}{x} - \frac{\cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{1}{x} - \frac{\cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{1}{x} - \frac{\cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{x \cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{x \cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{x \cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{x \cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \sin (nt)}{n} \right)^{T} - \left(\frac{x \cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right)^{T} - \left(\frac{x \cos (nt)}{n^{2}} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}{\partial t} \left[\left(\frac{x \cos (nt)}{n} \right) \right]$$

$$= \frac{\partial}$$

whon
$$n = 1, 2, 3$$
,

 $x = \frac{11}{2} + \frac{2}{11} \left[\frac{12}{12} + 0 \times \cos 2x + \frac{12}{22} \right] + \frac{12}{11} \left[\frac{12}{12} + \frac{12}{11} \right] \left[\frac{12}{12} + \frac{12}{12} + \frac{12}{11} \right] \left[\frac{12}{12} + \frac$

$$x = \frac{11}{2} - \frac{4}{7} \left[\frac{(05x)}{1^2} + \frac{(053x)}{3^2} + \frac{(055x)}{5^2} \right]$$

Ibland Ilb)

and there the required sonies is a half range series ie, the required series is an odd function for which.

$$a_{0} = 0$$

$$bn = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin \left(\frac{n\pi x}{x}\right) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin \left(\frac{n\pi x}{x}\right) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \sin \left(\frac{n\pi x}{x}\right) dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x \sin \left(\frac{n\pi x}{x}\right) dx$$

$$= \frac{2}{\pi} \left[\left(\frac{x - (0 \sin x)}{n}\right)^{\frac{\pi}{n}} - \left(\frac{1 \times - \sin(nx)}{n^{2}}\right)^{\frac{\pi}{n}} \right]$$

$$= \frac{2}{\pi} \left[- \left(\frac{x \cos nx}{x}\right)^{\frac{\pi}{n}} + \left(\frac{\sin(nx)}{x}\right)^{\frac{\pi}{n}} \right]$$

$$= \frac{\partial}{\partial x} \left[-\left(\frac{x \cos nx}{n} \right)^{\frac{1}{2}} + \left(\frac{\sin (nx)}{nx} \right) \right]$$

$$= \frac{\partial}{\partial x} \left[-\left(\frac{x \cos nx}{n} - 0 \right) + \left(\frac{\sin nx}{n^2} - \sin 0 \right) \right]$$

$$=\frac{2}{\pi}\left[\left(\frac{\pi}{n},\frac{(-1)^{n}}{n}\right)+\left(0-0\right)\right] \qquad (-2)\left(\frac{24}{1}\right)^{\frac{24}{1}}$$

$$=\frac{2}{\pi}\left(\frac{\pi}{n},\frac{(-1)^{n}}{n}\right)$$

$$=\left(\frac{2}{2}\right)\left(\frac{\pi}{n}\right)^{n}$$

$$=\left(\frac{2}{2}\right)\left(\frac{\pi}{n}\right)^{n}$$

$$=\frac{2}{\pi}\left(\frac{\pi}{n}\right)^{n+1} \qquad \left(\frac{\pi}{n},\frac{\pi}{n}\right)^{n}$$

$$=\frac{2}{\pi}\left(\frac{\pi}{n}\right)^{n+1} \qquad \left(\frac{\pi}{n}\right)^{n} \qquad \left(\frac{\pi}{n}\right)^{n}$$

$$=\frac{2}{\pi}\left(\frac{\pi}{n}\right)^{n+1} \qquad \left(\frac{\pi}{n}\right)^{n+1} \qquad \left(\frac{\pi}{n}\right)^{n} \qquad \left(\frac{\pi}{n}\right)^{n}$$

$$=\frac{2}{\pi}\left(\frac{\pi}{n}\right)^{n+1} \qquad \left(\frac{\pi}{n}\right)^{n} \qquad \left(\frac{\pi}{n}\right)^{n}$$

$$=\frac{2}{\pi}\left(\frac{\pi}{n}\right)^{n} \qquad \left(\frac{\pi}{n}\right)^{n} \qquad \left(\frac{\pi}{n}\right)^{n} \qquad \left(\frac{\pi}{n}\right)^{n}$$

$$=\frac{2}{\pi}\left(\frac{\pi}{n}\right)^{n} \qquad \left(\frac{\pi}{n}\right)^{n} \qquad \left($$

a) Find the Fourier cosine series as well as fourier sine series for $f(x) = x^2$, $o \leq x \leq c$ also sketch f(x) and two periodic function.

$$a_0 = \frac{2}{c} \int f(st) dst.$$

$$a_0 = \frac{2}{c} \int x^2 dx.$$

$$a_{0} = \frac{\partial}{\partial c} \left(\frac{\alpha^{3}}{3} \right)^{c}$$

$$= \frac{\partial}{\partial c} \cdot \frac{c^{3}}{3} = \frac{2C^{2}}{3}$$

$$a_{0} = \frac{\partial}{\partial c} \int_{c}^{c} f(x) \left(\cos \left(\frac{n\pi x}{c} \right) dx \right)$$

$$= \frac{\partial}{\partial c} \int_{c}^{c} \alpha^{2} \cdot \left(\cos \left(\frac{n\pi x}{c} \right) dx \right)$$

$$= \frac{\partial}{\partial c} \left(\left(\frac{\alpha^{2}}{2} \cdot \frac{\sin \left(\frac{n\pi x}{c} \right)}{2\pi c} \right) - \left(\frac{\alpha x - (\cos \left(\frac{n\pi x}{c} \right)}{2\pi c} \right) + \frac{(\cos \left(\frac{n\pi x}{c} \right)^{2})}{(\frac{n\pi x}{c})^{2}} \right)$$

$$= \frac{\partial}{\partial c} \left(\frac{\alpha^{2}}{2} \cdot \frac{\sin \left(\frac{n\pi x}{c} \right)}{2\pi c} \right) + \left(\frac{\alpha x}{2c} \cdot \frac{(\cos \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right) - \left(\frac{\alpha \sin \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right)$$

$$= \frac{\partial}{\partial c} \left(\frac{c^{2}}{2c} \cdot \frac{\sin \left(\frac{n\pi x}{c} \right)}{n\pi y_{0}} \right) + \left(\frac{2c}{2c} \cdot \frac{\cos \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right) - \left(\frac{\alpha \sin \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right)$$

$$= \frac{\partial}{\partial c} \left(\frac{c^{2}}{2c} \cdot \frac{\sin \left(\frac{n\pi x}{c} \right)}{n\pi y_{0}} \right) + \left(\frac{2c}{2c} \cdot \frac{\cos \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right) - \left(\frac{\alpha \sin \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right)$$

$$= \frac{\partial}{\partial c} \left(\frac{c^{2}}{2c} \cdot \frac{\sin \left(\frac{n\pi x}{c} \right)}{n\pi y_{0}} \right) + \left(\frac{2c}{2c} \cdot \frac{\cos \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right) - \left(\frac{\alpha \sin \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right)$$

$$= \frac{\partial}{\partial c} \left(\frac{c^{2}}{2c} \cdot \frac{\sin \left(\frac{n\pi x}{c} \right)}{n\pi y_{0}} \right) + \left(\frac{2c}{2c} \cdot \frac{\cos \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right) - \left(\frac{a \sin \left(\frac{n\pi x}{c} \right)}{(\frac{n\pi x}{c})^{2}} \right)$$

$$= \frac{3}{c} \left(0 + 2 e^{3} \frac{\cos(n\pi)}{(n\pi)^{2}} - 0 \right)$$

$$\frac{4}{\alpha} \frac{c^{3}}{(n\pi)^{2}}$$

$$= 4 c^{2} \times (-1)^{n}$$

$$= 4 c^{2} \times (-1)^{n}$$

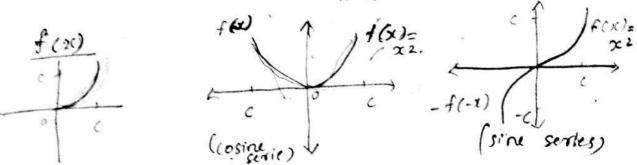
$$= \frac{4 c^{2} \times (-1)^{n}}{n^{2} \pi^{2}}, 4 bn = 0$$

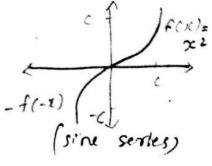
Thin the fourier series feel corresponding to the required cosine series.

$$F(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{c}\right)^n \frac{s(a^2 x)^n}{3}$$

$$x^2 = \frac{2c^2}{3} + \sum_{n=1}^{\infty} \frac{4c^2 x(H)^n}{n^2 H^2} \cos\left(\frac{n\pi x}{c}\right)$$

$$\frac{x^{2}}{3} = \frac{c^{2}}{3} + \sum_{n=1}^{\infty} \frac{4c^{2}x(-1)^{n}}{n^{2}\pi^{2}} \cos\left(\frac{n\pi x}{c}\right)$$





Half range line someirs (dd funetim).

$$b_{n} = \frac{2}{c} \int_{c}^{c} (\alpha) \frac{\sin(n\pi\alpha)}{\sin(n\pi\alpha)} d\alpha.$$

$$= \frac{2}{c} \int_{c}^{c} (\alpha^{2} \cdot \frac{\sin(n\pi\alpha)}{c}) d\alpha.$$

$$= \frac{2}{c} \int_{c}^{c} (\alpha^{2} \cdot \frac{\sin(n\pi\alpha)}{c}) - \frac{2}{c} (\alpha^{2} \cdot \frac{\sin(n\pi\alpha)}{c}) + \frac{2}{c} (\cos(n\pi\alpha)) + \frac$$

```
1/3/16

1/4 (Alalis ange)

1/4 (
   4) show that the constant it can be expanded
                                                                  infinite series 4c sin x+ sin3x + sin5x+...]
                     O LOC L TT (Half lange)
                                                                       the required series is [-17, 17]
                    the Half varge sine series
                                                the function f(x)=e in the intervel,
                   (o, \pi)
             Forwhich ao = 0 an = 0.
                  bn = \frac{\partial}{\mathbf{T}} \int f(\mathbf{x}) \sin\left(\frac{n\pi x}{c}\right) dn.
                                  = \frac{\partial}{\partial t} \int_{0}^{\infty} c \cdot \frac{8in(\frac{n\pi x}{4})}{2} dx.
                                 = 2 5 c. 8in (n x) dr.
                      = \frac{2}{\pi} \left[ c \cdot \frac{-\cos(nx)}{n} \right]_{0}^{\pi}
                  = \frac{2 \times (\cos n)}{n} - \frac{2050}{n}
                                        = -\frac{2c}{\pi} \times \left(\frac{(c_1)^n}{n} - \frac{1}{n}\right)
                                        -\frac{2c}{\pi} \times \left(\frac{(-1)^{n-1}}{n}\right) = \frac{2c}{n\pi} \left(\frac{(-1)^{n}}{n}\right)
```

The standard fourier sine series

F(s) =
$$\frac{2}{n}$$
 bn $\sin\left(\frac{n\pi\alpha}{n}\right)$

= $\frac{2}{n}$ $\frac{2}{n}$ $\frac{2}{n}$ $\frac{1}{n}$ $\frac{1}{n}$

5) Find the half range fourier sine scries for the function
$$f(x) = e^{x}$$
 in the entervel $o \angle x \angle 1$

ans: Here the Required half zenes is a fouries sine series for the function, $f(x) = e^{x}$ in the interval (0,1) for which, $a_0 = 0$ c $bn = \frac{a}{c} \int f(x) \sin(\frac{n\pi x}{c}) dx$.

1) If
$$f(u) = \int_{0}^{\infty} \int$$

= 3 × TZ,2 = T×4 = T

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t} \int_{0}^{\infty} f(x) \cos\left(\frac{n\pi x}{t}\right) dx$$

$$= \frac{\partial}{\partial t} \int_{0}^{\infty} \frac{1}{x} \cos\left(nx\right) dx + \int_{0}^{\infty} \frac{1}{x} \left(\pi - x\right) \cos(nx) dx$$

$$= \frac{\partial}{\partial t} \left(\left(\pi - x\right) \frac{\sin(nx)}{n}\right) - \left(1 \times -\frac{\cos(nx)}{n^{2}}\right)^{\frac{1}{2}} + \left(\left(\pi - x\right) \frac{\sin(nx)}{n}\right) - \int_{0}^{\infty} \frac{1}{x} \left(x \frac{\sin(nx)}{n} + \frac{\cos(nx)}{n^{2}}\right) + \left(\pi - x\right) \frac{\sin(nx)}{n} + \frac{\cos(nx)}{n^{2}} + \int_{0}^{\infty} \frac{1}{x} \left(x \frac{\sin(n\pi)}{n} + \frac{\cos(n\pi)}{n^{2}}\right) + \left(x \frac{\cos(n\pi)}{$$

1(1) =
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} \frac{a_n (os(n\pi))}{a_n} = \frac{1}{10} + \sum_{n=1}^{\infty} \frac{a_n (os(n\pi))}{a_n} = \frac{1}{10} + \sum_{n=1}^{\infty} \frac{1}{10} \left[\frac{2 \cos(n\pi)}{a_n} - (-1)^n - 1 \right] \left(\frac{\cos(n\pi)}{a_n} + \frac{1}{10} + \frac{2}{10} +$$

sine series for discontinuous function.

fix) in the intervel, (o, π) forwhich, $a_0 = o$, $a_0 = o$. $bn = \frac{\partial}{\partial x} \int f(x) \int sin(n\pi x) dx$. $= \frac{\partial}{\partial x} \int f(x) \int sin(n\pi x) dx$ $= \frac{\partial}{\partial x} \int f(x) \int sin(n\pi x) dx + \int f(x-x) \int sin(nx) dx$ $= \frac{\partial}{\partial x} \int f(x) \int dx \int dx + \int f(x-x) \int sin(nx) dx$ $= \frac{\partial}{\partial x} \int f(x) \int dx \int dx + \int f(x-x) \int sin(nx) dx$ $= \frac{\partial}{\partial x} \int f(x) \int dx \int dx \int dx + \int f(x-x) \int dx \int dx$

througho

$$P = \frac{\partial z}{\partial x} = Z_{x}, \quad Q = \frac{\partial z}{\partial y} = Z_{y}$$

$$Y = \frac{\partial^{2} z}{\partial x^{2}} = Z_{xx}, \quad Q = \frac{\partial^{2} z}{\partial x \partial y} = Z_{xy}.$$

$$V = \frac{\partial^{2} z}{\partial x^{2}} = Z_{yy}.$$

order & Degree of a Partial D.E (P.D.E)

The order of a P.DE is the order of the higest partial derivative present in that equation.

the degree of a P.D.E, is the degree (power)

of the highest order partial derivative present

in the equation, when the equation has been made

rational a integral as far as the partial

derivatives are concerned. For e.g.:

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$
; order = 1, degree = 1

$$\frac{\partial u}{\partial t} = \frac{\alpha \partial^2 u}{\partial x^2} + \sin \alpha$$
; order = 2, degree = 1

$$\left\{ \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right\} y = \left(\frac{\partial z}{\partial y} \right) z ; order = 1 , degree = 2$$

The number of variables is the number of independent-variables in the P-D.E. For eg:

 $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} > u = f(t,x) = a variables.$

 $\frac{\partial}{\partial t} = \frac{\partial^2 \left[u_{xx} + u_{yy} + u_{zz} \right]}{\partial t}$ $\frac{\partial u}{\partial t} = \frac{\partial^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]}{\partial t}$

t, or, y, z -> independent

No of variables = $\frac{4}{4}$ variables u = f(t, x, y, z)

* Linear and non-linear P.D.E

Aux + Bugy + Cuyy + Dux + Elly + Fu-a: -

where A, B, C, D, E, F and & one given sunctions of & & 4 otherwise, the P.DE is said to be show-lines for eg:

 $Ou_1 = C^2 U_{\alpha \alpha}$. $\rightarrow linear (4)$

O Usca + uyy + U = Sin a. → linean!

@ uux + yuy + u = 1. -> non-linear.

@ uxx + uyy + u2 = 0. - non-breas.

+ Homogeneous & Non-Homogeneous p.D.E in the general p.D.I= (A) is homogeneous if G=0 for all x dy in the domain of the equation. otherwise it is said to be non-homogeneous.

Now we are arranging the eqn (A) are

$$A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial u}{\partial x \partial y} + C \frac{\partial u}{\partial y^2} + D \frac{\partial u}{\partial x} + E \frac{\partial u}{\partial y} + F u = C u$$

For humogeneous case G=0 the equation becomes -

$$\left(A\frac{\partial^2}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial}{\partial x} + E\frac{\partial}{\partial y} + F\right)u = 0$$

$$Lu = o - B$$

where it's the differential operator ine $L = A \frac{\partial^2 y}{\partial x^2} + B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F$

Enday The Painciple of Super position.

If us us un be an infinite solutions of the equation B then $\sum_{n=1}^{\infty} c_n u_n = c_1 u_1 + c_2 u_2 + \cdots + c_n u_n$ converges and is differentiable term by term through out some domain of the independent variable, then the u = E coun is also a solution of equation (B) P-D E (5) with constant and variable coefficients. of the coofficient A, B, C, D, F&F in A a

all constants then the equation is said to be a P-DE with constant coefficients, othera it is a P-DE with variable coefficient

Eg: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \sin x \Rightarrow p \cdot p \cdot E \text{ with constant}$ Coefficients (constants)

2) x dru + y da = 1. > P. DE with variable coefficients contents

Formation of p.D.E.
Now we are going to form a p.p. !

Eleminating arbitrary constants eleminating arbitrary function.

comation by eleminating arbitary constants. suppose we have an equation f(x,y,z,a,b)=0where, 'a', and 'b' are arbitary constants. Let us consider z as a dependent variable and 'x' and 'y' are independent variable (ie, two independent variable). Now we are eliminating the two arbitary constant in ex 'a', b' in the equation (2) by substituting the suitable P. De Birative with respect to x & with respect to y. Then we get after elimination $\phi(x,y,z,p,q) = 0.$ which is a p.D.E of first order ie, equation @ & @ show that if the number arbitacy constants to be eliminated is equal to the roumber of independent variable, then we get a first order p.D.E. otherwise, if the no of arbitrary constants to be eliminated is more than the no f independent variable, we get a DDF of higher order- However, this higher

Note:

If the no of arbitary constants is more than two, then the obtained second order partial derivative to eliminate arbitary constant.

1) Find the P.D.E by eliminating the arbitrary constants a and b' from the following.

(a)
$$z = (x-a)^2 + (y-b)^2$$

(b)
$$z = ax + by + a^2 + b^2$$

an;

 $\frac{\partial^2}{\partial a} q = \partial (y-b) \Rightarrow y-b = \frac{q}{a} - \frac{3}{3}$ Substitution the construction

substituting the equisi @ \$ 3 in 1

$$\therefore z = \left(\frac{r}{s}\right)^2 + \left(\frac{q}{s}\right)^2$$

$$\frac{P^2}{4} + \frac{q^2}{4}$$

$$\frac{P^2 + q^2}{4}$$

of 12 ptq2 which is the required P.D.E with

(b) Zo ax + by + a2 +b2 — D

peretially wirto x.

 $\frac{\partial z}{\partial x} = a$

-> p= a -@

pifferentiating the eqn @ partially or r to y'

 $\frac{\partial z}{\partial y} = b =$ q = b -

substituting the equits @ & 3 in 1.

required pur DE with first order. PDE

Find the D.E for, all spheres, of fixed radius having their centres in the xxplan ans: The equation of the sphere with centre at (h, k, o) in the xy-plane & radius \$171 is given by.

 $(x-h)^2 + (y-k)^2 + z^2 = r^2$ Differentiating the proverally wir-to x

arbitary function

(1) x = f(x2-y2)

Differentiating the eqn (1) partially we retore.

$$\frac{\partial z}{\partial x} = f'(x^2 - y^1) \times \partial x$$
 $\Rightarrow P_1 = \partial x_1 f'(x^2 - y^2) \longrightarrow 0$

pifferentiating the eqn (1) partially we to y.

 $\frac{\partial z}{\partial y} = f'(x^2 - y^2) \times \partial y$.

 $\frac{\partial z}{\partial y} = f'(x^2 - y^2) \times \partial y$.

 $\frac{\partial z}{\partial y} = \frac{\partial z}$

```
Defendating the @ again puticilly wirbs
  (6)-x),6-(6)+x),+);=6
         -1-x(h_1-x),b+3x(h_1+x),f=\frac{h\ell}{2\ell}
        p. of teach while the B paint addy wire he y
        (Bi-x), b+ (Ri+x), t=d
               1x(bi-x), b·+ +x(bi+x), f = 36
     or sterentiating the @ partially w. o. hox
                 (B)- (B1-x) &+ (B1+x) + = x : NO
             1-5=1 (hi-x) b+ (hi+x) f=2
             0= 6b-xd: (=
2=bdfa+zhb-bdfx-zxd
(dbx-2h)b = (bbx-2x)d = fx th 82x2d
               (x24-250) FB = (HBA-28) Dol
           (1000 21 h) b= (Hehrz)x)d
  \frac{\partial hx - 2x}{\partial hx - zh} = \frac{b}{d} = \frac{(bh-z)x}{(dx-z)h} = \frac{b}{d} \in \frac{\Theta}{\Theta}
            (E) - \left(\frac{2}{bh-2}\right) \left(\frac{2}{hx}\right)_1 f \times 3 \pi = b 
b = \frac{Re}{Ze}
\left[\frac{2}{b \times h \times - (1 \times 1) \times 2}\right] \left(\frac{2}{h \times 1}\right), f = b

\frac{\int \frac{he}{he} \times (hx) - (hx) \frac{he}{e} \times 2 \int (\frac{2}{hx})_1 f = b
```

(i)
$$y = \frac{\partial^2 z}{\partial x^2} = f''(x+iy)x1 + g''(x-iy)x1$$
 $y = f'''(x+iy) + g'''(x-iy)$

Pifferentiating the Greatist sespects to y.

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}$$

 $\frac{\partial x}{\partial z} + 0 + \frac{1}{c^2} \left(\partial z \frac{\partial z}{\partial x} \right) = 0 \Rightarrow \frac{\partial x}{\partial z} + \frac{1}{c^2} \left(\partial z \frac{\partial z}{\partial x} \right) = 0$ In this problem the number)iff the partially w. o. to y

0 + 2 (dy 7. 2) 20

of arbitary constants to be elimenated = 3, which is greater than the number of independent variable which equal to a 190,40

ie;
$$\frac{1}{\sqrt{2}}\left[z - \frac{1}{\sqrt{2}}\left(\frac{\partial z}{\partial x}\right) + \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial y}\right] = 0$$

if $\frac{1}{\sqrt{2}}\left[z - \frac{1}{\sqrt{2}}\left(\frac{\partial z}{\partial x}\right) + \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial y}\right] = 0$

Since $\frac{1}{\sqrt{2}}\left[z + \frac{\partial^2 z}{\partial y \partial x} + \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}\right] = 0$

Since $\frac{1}{\sqrt{2}}\left[z + \frac{\partial^2 z}{\partial y \partial x} + \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}\right] = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{$

Flimmating the f'(x) and g'(x) from in eqn (1) with the help of the eqn (1) (2) (3).

If $f'(x) = \frac{p - g(y)}{y}$, $g'(g) = \frac{q - f(x)}{x}$ $S = \left[\frac{p - g(y)}{y}\right] + \left[\frac{q - f(x)}{x}\right]$ The S = x(p - g(y)) + y(q - f(x)) xy

S = xp - g(y) + gy - g(x)

from eqn \mathcal{D} $Z = Y \times f(x) + X \times f g(y)$.

 $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x$

Here u, v are the two functions containing the '3' independent variables x, y & z. and 'p' is an arbitary function.

By elionenating the arbitary function p

from the selation $\phi(u, v) = 0$ we get

a first order pipit in p, 2 and with 1s the functions of the Brindependent vaniables a, 4 &z where \$100 and \$10

$$P = \frac{\partial u}{\partial y} \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial y}$$

$$R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}$$

$$R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}$$

16/3/16 rednuda

= 0

an

De Find the DE of all planes which are at a constant distance from origin.

ans. The equ of all planes which are at a constant distance 'k' units from origin takes the form, lext mythz=k-10 where 12 +m² + r² = 1²

Differentiating ① with respect to x & y

 $14 + n \frac{\partial z}{\partial x} = 0 \Rightarrow 14 + np = 0 - 0$ $n + n \frac{\partial z}{\partial y} = 0 \Rightarrow n + nq = 0 - 0$ eliminating

eliminating L, m, and n using D, QdE Decomes (-np)x+(-nq)y+nz=kJ124m24n2 $n(-pnc-qy+z) = kJ(-np)^2 + (-nq)^2 + n^2$ $n(-pnc-qy+z) = knJp^2 + q^2 + 1$

Z= px+qy+ kJp2+q2+1, which is partial D. T= of first order.

Note: In all of the above eggs the number of arbitary constants is equal to the number of dependent variables. Hence the partial D. F. s.) are of first order.

uedanday Continues

- ontains two dispitary function & then in general there elimination wil give a second order P. D.E
- of the arbitrary function, are more than a then we need the higher order proprivations for elimination.
- The relation $\phi(u,v) = 0$ involving the arbitary function ϕ can be woilten in another form like $\phi(u) = \phi(v)$ or $v = \phi(u)$

after elimination of the arbitary function of we get a first order ra p &q is of the form Pp+ Qq= R $P = \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \cdot \frac{\partial v}{\partial y}$ -p = ay x az -az x (-x) P = 4yz + axz $9 = \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial z} - \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial z}$ = 22 x(-y) - 2x,22 = - 2yz - 4xz = Q = -(2yz + 4zz) $R = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x}$ 2x.x(x) - 2yx(-y) = -2 x2 + 2y2 $R = \lambda \left(y^2 - x^2 \right)$ The required P.D.E is of the form production

 $(4yz+axz)p + -(4yz+axz)q = 2(y^2-x^2)$ $(4yz+xz)p - (yz+axz)q = y^2-x^2$ which conditions function of seom x. 4.7 = of (x+y+z)

ans: The given relation is of the form,

where $u = x_{+}y_{+}z$ V = x + y + z.

after elimination the arbitary function of from the given relation we get a tirst order p.p.E is of the form Pp+Qq=R.

= xz : x1 - xy x 1.

$$p = xz - xy$$
 $\Rightarrow p = x(z-y)$

$$Q = \frac{\partial u}{\partial z} - \frac{\partial v}{\partial x} - \frac{\partial u}{\partial x}, \frac{\partial v}{\partial z}$$

 $= xy \times 1 - yz \cdot 1.$

$$\varphi = \chi y - yz$$
 $\Rightarrow \varphi = y(\chi - z)$

$$R = yz - xz$$
 $\Rightarrow R = z(y-z)$

After elimination, the required p-D.E is of the form,

which is a p.p. ε of first order.

Solution of first order P.D.E's

Before going to solve a p.D.E we have to eliscuss about some kinds of solutions of P.DE.

o complete integral.

we have seen that the elimination of the carbitary constant from the relation Regret

f(x,y,z,a,b) = 0. \triangle

aires the following P.D.E

If the equation (1) is derived from the equation (1) by any method. Then the equal which contains the asbitaly constant that are equal to the number of independent valuable is called The complete the integral of the equation (1)

@ Particular Integral

A particular integral of the eyn is obtained by giving particular values to the constants as b in the complete integral.

3 heneral Integral
The elimination of the debitacy function of

from the relation of (u,v)=0, where u and v are the function of the 3 independent variables x, y, & z gives a linear p.p.E of the form, $p_p + Q_q = R$, if we say that $\phi(u,v)=0$ is the solution of the p.p.E, $p_p + Q_q = R$, then it q is known as the general in tegral.

Bringular Integral

the envelope of the surface of the equation f(x,y,z,a,b) = 0 — A is obtained by eliminating

the arbitrary constants a & b from the equ

the arbitrary constants a & b from the equ

the above equippers a relation blue x,y,azwhich is called the singular integral.

Let the complete integral be f(x,y,z,a,b)=0 and let us assume that one of the arbitrary constant be a function of other say $b=\phi(a)$, then one equ becomes f(x,y,z,a,b)=0 the general integral is obtained by elimenating the arbitrary constant a from $f(x,y,z,a,\phi(a))=0$ & $\frac{\partial f}{\partial a}=0$. This eyn gives the curve of intersection of two constants surfaces given by the relation $f(x,y,z,a,\phi(a))=0$

This carre is known as the envelope of the family

Lagrange's Method.

ionsider a first order P.D.E Ppt Qq=R which is linear in pand a were Piquer x, y, z. The procedure for the are junction of used for finding u av as me large method is above P.D.E solution of the

The General Solution of the Linear P.D.E PptQ=P. is $\phi(u,v)=0$, where ϕ is an arbitary fined, and u, v are the function of 3 independent yaniable 2, y 62 ie; a(x,y, Z) - E& u(x,y, Z) are the two independent solution of the

Lagranges auxillary equation dx = dy = dz

1: - de de 1902an " price

working Rule To obtain the solution of PDE, Pp+Qq=R from the Lagranges auxillary equation.

P & rind two independent solutions of these auxilliary: equation as u(x, y,z)=c and V(x, y, z) = c2 and the general solution of PDE Prtag=Riis given by one of

the following toxms p.(a, V) = 0 011

 $u=\phi(v)$, $v=\phi(u)$.

two independent In order to obtain the Solution are use the Sollowing mothods.

p stethed of grouping (autor) suppose that one of the variable as either object or cancel out from any pair of the fractions of da dy de and then a solution can be obtained by using usual methods. To earne procedure is repealed with another poin of fraction of the above equation for I'd in independent solutions.

(i) Methods of multipliers (Rule 2.)

If I, m, n are the three multiplies then by a were none principle of algebra each fraction of ean dx dy 2 dz will be canal to ldx + mdy + ndz

If it is possible to choose limin such that lp+mQ+nR=0. Then Idx+mdy+nd2=0. which can be integrated to give a (31,4,2)=c The method may be repeated to get another independent solution v(sc, 4,2) = C2, The multiplier may be henchions of x, y, 2)/constant Some times, it is required to Bind only one solution using multipliers.

* NOte-1 solution of the eqn dx = dy odz is If one

ant determined by rule-1 & suppose that we and to determine the and solution by rule of mule a then that solution known to as is used to find the another independent solutions.

Hote-2

Je one solution is found that g(x,y)=c,

then the constant c, should be ased.

in the plages of g(x,y) throughout the

process of calculating free and solution are

finally when and solution is found involve.

(1) then C, should again be replaced by g(x,y)

Alle y2 Zp + x2 Zq = xy2 · T

The given eqn is of a lagrange's D. E

of the form Pp + Qq = R

and the Lagrange $P = 13 \left[\frac{dx}{P} = \frac{dy}{R} = \frac{dz}{R} \right]$

 $P=y^2z$, $Q=x^2z$, $R=xy^2$

 $\frac{dx}{y^2z} = \frac{dy}{x^2z} = \frac{dz}{xy^2} \quad (A \cdot E)$

taking the first two ratio, we get

 $\frac{dx}{y^2/x} = \frac{dy}{x^2/x}$

a'da y'dy then on integration we get for 2.19 . Sy' dy 73 J3 1C x 3 y3 , C \$: x 3 y 3 3 3C. C1: 30 : x3-y = C, which is one first independent solution of the form u(x,y, x) = + c, FOR getting the second independent solution we have to take the fixst & third ratio $l'e, \frac{dx}{y^2z} = \frac{dz}{xy^2}$ $\frac{dx}{z} - \frac{dz}{z} \rightarrow x dx - z dz.$ Thon on integrations we get Soda = Szdz. $\frac{x^2}{2} = \frac{z^2}{2} + c$ $\frac{\chi^2 - \chi^2}{2} = C \Rightarrow \chi^2 - \chi^2 = QC.$ 21=12 => x2-Z2=62.

which is our second independent solution

Then the general solution \$ (4, V)=0. ie, $\phi(x^3-y^3, x^2-x^2)=0$ @soive ptanx +atany = tanz and The given eqn is a Lagrange D.E. is of the form Pp + Qq = R. Then the Lagrange A.E are $\frac{dx}{P} = \frac{dy}{0} = \frac{dz}{R}$ $\frac{dz}{\tan x} = \frac{dy}{\tan y} = \frac{dz}{\tan z}$ For getting the first indepent solution We are taking the first a Ratio Then on integration fax = fay tang ien Scot ade = Scoty dy ie log sint = log siny +log of Scotteda: c'e, log sinx = log (c, * siny)

= logiul +c

Sin x = C, siny

which is out Arst independent sing of which is out that indep $U(\alpha, y, z) = c$ forgetting the and independent words, we gave taking and & 3rd Ratio dy = dzThen on integration Sdy = Sdz tonz log atlogs Scotydy - Scot z dz clogab log singt = log sinz + log Cz log sing = log (c2 Sinz) Siny = Cz Sinz $\frac{Sing}{Sinz} = C_2$ which in our 2nd $\frac{Sing}{Sinz}$ independent solution is $\frac{1}{2}$ of the form $V(x,y,z)=C_2$ Then our general solution of (u,v) =0. ie $\phi\left(\frac{\sin x}{\sin y}, \frac{\sin y}{\sin z}\right) = 0$ 3 Solve xp+ yq = 3z.

Solve x2ptyq = Z2

inx sade

Toan

(solve. p-q - log (218) one: The given ean is a lagrang DE is of the form $P_p + R_q = R$ The Lagrange A.E. is dr = dy = dz $\frac{dx}{1} = \frac{dy}{-1} = \frac{dz}{\log(x+y)} = 0$ for getting the 1st independent solution are are grouping the firsts second Ratio $\frac{dx}{1} = \frac{dy}{-1} \Rightarrow dx = -dy$ Thon on integration we get, Sax = f dy $x = -g + C_i$ $x+y = C_i \quad \text{which is}$ $x+y = C_i \quad \text{which is}$ $x+y = C_i \quad \text{which is}$ For getting the second independent solution grouping the first & third ratio

ie, $\frac{dx}{1} = \frac{dz}{\log(\alpha t y)}$ from 0 >> dx = dz

log C1

log 4 dx = dx Then on integration, we get Slog C, dx = Sdz x logg = Z + C2

ie x log(x+y)-z=2 which is one and independent solution of the ((x, y, z) = <2 The general solution is of the form fru, v) = 6 ie p (x+y, x log(x+y1-z) =0. Solve 22 (y,z) p+ y2 (z-x)2 = z2 (x-y) The Givenego is a Lagrange D.E 15 of the form Pp + Pq = R $\frac{\partial x}{\partial x} = \frac{\partial x}{\partial y} = \frac{\partial z}{\partial z}$ ie $\frac{dx}{dx} = \frac{dy}{z^2(x-y)}$ $x^2(y-z)$ $y^2(z-x)$ By rethod of multiplieons lax +mdy + ndz

By ruthord of multiplieons lax +mdy + ndz

Fockung for getting the 2 independent lp+ma+nx \frac{1}{2\frac{

 $\frac{dz}{x} + \frac{dy}{y} + \frac{dz}{z}$

$$\frac{da}{a} + \frac{dy}{y} + \frac{dz}{z}$$

considering this with any fraction in 1

ie,
$$\frac{dx}{x} + \frac{dy}{y} + \frac{dz}{z} = 0$$

Then on integration

$$\int \frac{dx}{x} + \int \frac{dy}{y} + \int \frac{dz}{z} = 0$$

loga + Logy + log z = log C,

xyz=G This is our one independent Solution of the form U(x,y,z)=C, =

$$x_p + y_q = 3z$$

The given equation is a Lagrange D.E.d. of the form Pp+Qq=R

Then the Lagrange A. E is

$$\frac{dx}{P} = \frac{dy}{R} = \frac{dz}{R}$$

 $\frac{1}{2} \cdot \frac{dz}{z} = \frac{dy}{y} - \frac{dz}{3z}$ For gelfing the Airst independent solution we are taking the fixet a xatio $\frac{dx}{x} = \frac{dy}{x}$ then on integration, sax = say ie logoc = logy + log cz. $\log x = \log(c_1 xy)$ $\alpha = c_1 g$ => $\frac{\alpha}{y} = c_1$ which is out first == independent solution is of the form u(x, y, z) = C1. Fox getting the 2nd independent variable we use taking and a 3rd matio $\frac{dy}{y} = \frac{dz}{2z}$ Then on integration, say = saz logy = 1, log Z + log 52 logy = 1/09 (C2xZ) $y = \frac{1}{3} o(C_2 \cdot Z) \Rightarrow \frac{3y}{2} = C_2$ which is our 2nd andependent solution As of the form V(x, y, z)= <2

Then the general solution \$(4, 1)=0 re, \$ (\frac{3}{y}, \frac{3y}{2}) =0 an. The given eqn is Lagrage DE is of the form Pp+ Qq 2 R. Then the Lagrange AZ 2's $\frac{dx}{p} = \frac{dy}{\rho} = \frac{dz}{R} \qquad p = x^2$ $\frac{1}{2} \frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{z^2}.$ Taking the first two Ratio $\frac{dx}{x^2} = \frac{dy}{dx^2}$ Then on integration sax zsay $\int x^{-2} dx = \int y^{-2} dy$ $\frac{\chi^{-2+1}}{-\delta+1} = \frac{y^{-2+1}}{-\delta+1} + C_1$ $-x^{-1} = -y^{-1}$ $-\frac{1}{\alpha} = -\frac{1}{4} + c,$

which is one first independent solution of the form $u(x,y,z)=C_1$ for getting the 2nd Independent solution taking and 2 3rd Ration

Then on integration $\int \frac{dy}{y^2} = \int \frac{dz}{z^2}$ $\int y^{-2} dy = \int z^{-2} dz$ $\frac{y^{-2}t}{-2t} = \frac{z^{-2t}}{-2t} + C_2$ $-\frac{1}{y} = -\frac{1}{z} + C_2$ $\frac{-\frac{1}{y}}{-\frac{1}{z}} = C_2 \Rightarrow \frac{1}{z} - \frac{1}{y} = C_2$

which is one second ind independent solution of the form $V(x,y,z)=C_2$ then the general solution $\Phi(\alpha, V)=0$ i.e., $\Phi = \left(\frac{1}{y} - \frac{1}{z}\right), \left(\frac{1}{z} - \frac{1}{y}\right) = 0$

continue.

For getting the 2nd independent solution we are choosing $\frac{1}{x^2}$, $\frac{1}{y^2}$ $\frac{1}{z^2}$ are multiplies then each fraction in ② will be equal to

$$\frac{dx}{\partial z} + \frac{dy}{y^2} + \frac{dz}{z^2} = \frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz}{z^2}$$

$$= \frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz}{z^2}$$

taking the above feartion with any faut. we get,

$$\frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz}{z^2} = 0$$

Then on integration we get

$$\int \frac{dx}{x^2} dx + \int \frac{dy}{y^2} + \int \frac{dz}{z^2} = 0$$

$$-\frac{1}{x} + -\frac{1}{y} - \frac{1}{z} = 0$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = -c_2$$

which is the and independent solution of the form V(x,y,z)= 02

Then the general solution is

(7) solre (ye+ze)p - xyq. + xz =0

Then the lagrange $A \cdot E$ is $\frac{dx}{dx} = \frac{dy}{dx}$

$$\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$$

-c2 = C2

 $\frac{dx}{y^{2}+z^{2}}=\frac{dy}{-\alpha y}=\frac{dz}{-\alpha z}$ we are laking the second & third fraction $\frac{d\theta}{-xy} = \frac{dz}{-xz}$ ie, $\frac{dy}{y} = \frac{dz}{z}$ Then on integration we get $\int \frac{dy}{y} = \int \frac{dz}{z} \qquad logy = logz + log \leq 1$: logy = log (c, = z) :. y = C, xZ $\frac{y}{z} = c_1 = 0$ which is the first independent solution of the form u(x,y,z) = c1. · For getting the and independent solution, we we choosing x, y, z are multiplies Then each fraction in @ will be equal adx + ydy + zdzx(42+22) + y(-xy)+ Z(-xz) = xdx +ydy + zdz

ie
$$ncdoc + ydy + zdz = 0$$

Then on integration fide + sydy + fedz = 0

$$\frac{\pi^2}{a} + \frac{y^2}{2} + \frac{z^2}{a} = C_2$$

$$\frac{x^2 + y^2 + z^2}{a} = C_2 \Rightarrow x^2 + y^2 + z^2 = 2C_2$$

$$\alpha^{2} + y^{2} + z^{2} = C_{2}$$

which is our and independent substitute of the form $V(x,y,z) = C_2$

$$\frac{1}{2} \quad 9(u, v) = 0$$

$$\phi\left(\frac{y}{z}, x^{2+g+4}z^{2}\right) = 0.$$

& Solve
$$xydx + y^2dy = zxy - 2x^2$$
.
which is a Lagrange D.E. of the form
$$P_p + Qq = R.$$

& the language A.E is
$$\frac{dx}{p} = \frac{dy}{dz} = \frac{dz}{R}$$
.

ie, $\frac{dx}{ry} = \frac{dy}{y^2} = \frac{dz}{dz} = \frac{1}{2xy-2x^2}$

For getting the first independent solution we are choosing the first two frather we get $\frac{dz}{zy} = \frac{dy}{gz}$

Then on integration we get fax = fdy log x = logy + log C, logx = log(yc) : 2 = 4x c, => 2 = G4 which is first independent whiten of the form $ad(x,y,z) = C_1$. very fore first independent solution we are very il For that we goed taking the 2nd a god fraction $\frac{dy}{4z} = \frac{dz}{2xy-2xz}$ dy = dz - 2c,42 - 2c,42 $\frac{dy}{yz} = \frac{dz}{yz(z(1-2\zeta_1^2))}$ dy = dz $dy = \frac{dz}{G(z-\partial G)}$ Then on integration use get Sc, dy - Stz-ac,

 $C_{1}y = \frac{1}{\sqrt{2}} \frac{\log(z-RC_{1}) + \log C_{2}}{(z-2C_{1})}$ $x = \log (z-2C_{1}) + \log C_{2}$ $x = \log (z-2C_{1}) + \log C_{2}$ $x = \log (z-2C_{1}) + \log C_{2}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $x = \log (yz-2C_{1}) + \log C_{2}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{$

the

Fa

ie our 4.5 $\phi(u, v) = 0$ $\phi\left(\frac{x}{y}, \frac{y e^{x}}{yz - 2x}\right) = 0$

and The give eyn is a Lagrange D. R. is of the form $P_p + Q_q = R$.

Then the Lagrange AR is $\frac{dx}{P} = \frac{dy}{q} = \frac{dz}{R}$ i'e $\frac{dx'}{1} = \frac{dy}{-2} = \frac{dz}{3x^2 \sin{(y+2x)}}$ for getting the 1st independent solution we are taking the A's st two fraction $\frac{dx}{1} = \frac{dy}{-2} = \frac{dy}{-2}$

ilx 2dx = -deg

```
there on integration, we get to die - f-dy
               2x + y . C, (2)
          is our first independent solution
 of fore form a(s(,4,2) = c,.
lor the ffing the and independent solution
we have to make use of ast independent
  colution, fox that we are taking the Ist
 and god frathon
                                  19t2x= 2
               3x2 sin (y+2x)
       dx = \frac{dz}{3x^2 \sin C_1}
       3002 Sin C, dx = dz,
Then on in legeration we get; Sara sinc, dr=sdz
       3 Sin C1 = Z+C2
      x^3 sin c_1 = z + c_2
      x^3 \sin \zeta - Z = C_z
     x3 Sin (y+2x)-Z=C2 -3
 which our and solution of the ham
  $ V(x,y,z) = C2,
Trun the G.s, p(u, v)=0 ie p(2x+y, x3sin(y+ax)-z)
```

```
e are laking the third & last
                                 fraction
      itz x dx+ ydy+zdr
               x'(x^2ty^2+x^2)
     dz = a(xdx + ydy + zdz)
                  22+42+22
   dz = ardx + oydy + 2zdz
                   22+y2+x2
 Then on integration, we get,
                                         u= x2+y2+ z2
  Jdz = f2xdx + Qydy + Qzdz
x2+y2+z2
                                         duza redat
                                            24 dy+2 rd
  log = log(x2+y2+z2) + log c2
                                           Sdu = log(u)
  : logz = log (6x2+y2+z4x (2)
   : Reve 22+22 = C2 -3)
 which is one and independent solution. Then
  as is of the form of (u,v)=0
  ie, : \phi\left(\frac{y}{z}, \frac{z}{x^2+y^2+72}\right) = 0
solve (y+z)p+(z+x)q = xty
      given ean is a fixst oxdex Lagrange DE
thes
  of the form Pp+ Qq=R
 Then the Lagrange AIE is \frac{dx}{p} = \frac{dy}{n} = \frac{dz}{p}
     ie \frac{dx}{g_{+}z} = \frac{dy}{z_{+}x} = \frac{dz}{x_{+}y}
```

for getting two solutions the method of georging & multipliers are difficult TON 6 some way so, we are setting some ofthe fractions to 1 $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y} = \frac{dx-dy}{(y+z)-(z+x)} = \frac{dy-dz}{(z+x)-(z+y)}$ doi+dy+dz 417+2+2+2+4 $= \frac{dz}{x+y} = \frac{dx-dy}{y-x} = \frac{dy-dz}{z-y} = \frac{dx+dy+dz}{z(x+y+z)}$ Fox getting me first independent solution we are taking in 4th & 5th ratio $\frac{dx-dy}{x-y} = \frac{dy-dz}{y-z}$ then on integration $\int \frac{dx - dy}{x - y} = \int \frac{dy - dz}{y - z}$ (du : 10914 · log (x-y) = log (y-z) + logc, log (x-y) = log((y-z) x (4) $x-y = y-z \times c_1 = \frac{x-y}{y-z} - c_1 - c_2$ which is the ist independent southor of the for with

fourth and \$18th ration (4th &6"1)

$$\frac{dx-dy}{4x} = \frac{dx+dy+dz}{2(x+y+z)}$$

$$\frac{2x-dy}{-(x-y.)} = \frac{dx + dy + dz}{2(x+y+z)}$$

$$\log (x-y)^{-2} = \log((3c+y+z)xc_2)$$

$$(x-y)^{-2} = ((x+y+z) \times c_2)$$

then the a.s is of the form $\phi(u,v)$ -s

ie
$$\phi\left(\frac{x-y}{y-z},\frac{1}{(x-y)^2(x+y+z)}\right)=0$$

Genoralized form of Lagrange's Method.

Let the oth order Lagrange equation is of

the form P,p, + P2p2 --- + Popo = R

when
$$p_1 = \frac{\partial z}{\partial x}$$
, $p_2 = \frac{\partial z}{\partial x_2}$. $p_3 = \frac{\partial z}{\partial x_3}$

P1, P2.... Pn and R are the functions of

I, x2-- xn &z then the nth order

Lagrange A.E become, $\frac{dx_1}{P_1} = \frac{dx_2}{P_2} = \frac{-dx_0}{P_2} = \frac{dz}{P_2}$

Then el, = c, M2 = C2 ... , Ho= Cn. her n' independen solution of the above 1.E then the a.s is \$ (ux, u2---un) =0 1 Solve $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = xyz$ an: Here the Lagrange 1-E is $\frac{dx_1}{p_1} = \frac{dx_2}{p_2} = \frac{dx_3}{p_3} = \frac{du}{R}$ ie $\frac{dx_0}{P_1} = \frac{dy}{P_2} = \frac{dz}{P_3} = \frac{du}{R}$ $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z} = \frac{dy}{xyz}$ Forgething the 18 solution we are taking the 1st & 2nd ratio $\frac{dx}{dx} = \frac{dy}{4}$, Then on integration $\int \frac{dx}{x} = \int \frac{dy}{y}$ i'e logx = leg y+ legg C, logx = log (xr,) ie x = y(,) = = = c, -2 togething the and solution we are taking the and & 3 od ratio dy adz Then on integration Sdy 2 sdk 2) logy= logz plog &

y = zxcz => y = ccz - 3)

whose is the and independent solution.

ton getting 3rd solution we are taking

yz, zx, zy as multipliers in 0

 $\frac{yzdx}{xyz} + \frac{z \times dy}{xyz} + \frac{xydz}{xyz} = \frac{yzdx + zxdy + xydz}{3xyz}$

Now we are taking a with the last fraction

 $yzdx + zxdy + xydz = \frac{dy}{xyz}$ yzdx + zxdy + xydz = 3du d(xyz) + d = 3dufrom on integration we get

 $xyz = 3u + c_3$

which is the g od independent solution. Thus the u's is $\phi(u_1, u_2, u_3) = 0$ ic $\phi(2\zeta, \frac{y}{z}, \frac{y}{z}, \alpha yz - 3u) = 0$

homogeneous PDE 28/9/16 Solution of higher order Hordey with constant coefficient An equation of the form $a_0 \leftarrow \frac{\partial^n z}{\partial x^n} + a_1 \frac{\partial^n z}{\partial x^{n-1} \partial y} + a_2 \frac{\partial^n z}{\partial x^{n-2} \partial y^2} + \cdots$ called the higher order P.D.E with constant coefficients. then by replacing 0 for $\frac{\partial}{\partial x}$ and 0' for $\frac{\partial}{\partial y}$ $\left[a_0 \ b^n + a_1 \ b^{n-1} b' + a_2 \ b'^{n-2} b'^{2} + \cdots + a_n b'^{n}\right] z = g(x,y)$ F(0,0) = g(x,y)the solution of equation 1 consisting of two part (i) The complementary function (c.f) which is the complete solution (c.s) of the equation F(P,D)z=0 It must contains in arbitrary function, where in is the order of the D.E. (ii) The Particular Integral (P.I) which is the particular solution (foce from abitary functions) of the equation F(D, D')z=0. The complete solution (r.s), C.S = C.F+P.I (D)0). *

For finding C.F. (when the power of D'must be > D) For finding C.F, we are putting D=m&D'=1 in the egn ronn - not al .

```
the we get,
  a_0 m^n + a_1 m^{n-1} + a_2 m^{n-2} + \cdots + a_n = 0
         F(m, 1) = 0.
   Then @ is called the auxillary equation (4.E) of
   the equation 1
  of my ma man are the distinct roots of a
  if m, m, m, are distinct then the c.F
     C = \phi_1 (y + m_1 x) + \phi_2 (y + m_2 x) + \dots + \phi_n (y + m_n x)
  Note:
  If m_1 = \frac{a_1}{b_1}, m_2 = \frac{a_2}{b_2}, m_1 = \frac{a_1}{b_1}
     C = \phi_1(b_1y + a_1x) + \phi_2(b_2y + a_2x) + a_n(b_ny + a_nx)
  Case 2
  If one root mis repeating. Then the ciris
  (F = \phi_1(y+m_0x)+x\times\phi_2(y+m_0x)+\dots+x^{k-1}\phi_k(y+m_0x)
  Remark 1
 If the power of D' is greater that the power of D.
   the 1.E can be found by putting D=1 & D'=m
   in the equation 1
  The cif can be written by exchanging x by.
 * Remark 2
  If the power of D&D' are the same then the
  A.E can be found by either putting
(i) D=m & D'=1  (ii) D=1, & D'=m.
```

1) Solve the P.D.E 21x -21x -0. ins: The Symbolic form (ST) can be written by replace D for 2 & D' for d ie (D4 - D14) = 0. Now we are writing the Auxillary Equation (A.E. by putting D=m & D'=1 The 1E is, m4 - 14 =0 Then solving form m'. $(m^2-1^2)(m^2+1^2)$ $m=\pm 1$ $m=\pm i$ is The xoots of m = 1, -1, i, -i m_1, m_2, m_3, m_4 The complementary function CF, CF= 0, (y+m,x)+02(y+m2x)+03(y+m3x)+04(y+mx $CF = \phi(y+x) + \phi_2(y-x) + \phi_3(y+ix) + \phi_4(y+ix)$ 3 Solve (D3 - 402 D' + 4 DD =) z =0. an: 8F, $(D^3 - 4D^2D' + 4DD'^2) = 6$ D > D' A = D = m, D' = 1. The AE is, m3-4 m2+ 4m 12 =0 $m^3 - 4m^2 + 4m = 0$

$$m(m^{2}-4m+4)=0$$

$$m=0, m^{2}-4m+4=0$$

$$m=\frac{4\pm \sqrt{4^{2}-4x_{1}x_{4}}}{2\times 1}$$

$$=\frac{4}{2}=R, \cdot 2$$

$$=0, 2 2$$

$$= \phi_1 (y + m_1 x) + \phi_2 (y + m_2 x) + x \phi_3 (y + m_2 x)$$

$$= \phi_1 (y) + \phi_2 (y + 2x) + x \phi_3 (y + 2x)$$

$$4m^2 + 12m + 9 = 0$$
 or $(2m + 3)^2 = 0$

$$M = -\frac{3}{2}, -\frac{3}{2}$$

$$m = -\frac{3}{2}, -\frac{3}{2}$$
 $m_0 = \frac{a}{b} = -\frac{3}{2}$

putting $a = -3, b = 2$

$$z = \phi$$
, (by + ax) + x ϕ_2 (by + ax).

$$C.F = \phi_{1}(bx+dy) + y\phi_{2}(bx+dy)$$

$$C.S : \phi_{1}(3x-\partial y) + y\phi_{2}(3x-\partial y)$$

$$C.S : \phi_{1}(3x-\partial y$$

```
Here CF, Z= p(y+m,x) + $\pa_2(y+m_2x) + x $\phi_3 (y+m_2x)
   z= $\phi_1(y) + $\phi_2(y+\frac{1}{2}x) + \alpha \phi_3(y+\frac{1}{2}x)
  == 0, (g) + 02 (2y+x) + x 03 (sy+x)
I solve \frac{\partial^2 z}{\partial x^2} = a^2 z, given that \frac{\partial z}{\partial x} = a sing, &
\frac{\partial z}{\partial y} = 0 when \infty = 0.
The given B = is. \frac{\partial^2 z}{\partial x^2} = a^2 z = 0
ie, By seplacing 3 = 0.
A.E => Here in s.F, no D', So, D=m.
       m^2 a^2 = 0.
   (m+a) (m-a) = 0
     m =-a, M=+a. >m = ±a.
 .. The a.s is given by
 (Fie z= 0, (y+m,x)+ 02 (y+m2x).
    z = \phi_1 (y + ax) + \phi_2 (y - ax).
Now we are finding the 2x & dy by partially
differentiating the 1 w. s. to x & y.
  DZ = α .φ. (y+ax) + (a) φ2 (y-ax)
 = a [q'(y+ax) - \\ \partile 2'(y-ax)] -
```

$$\frac{\partial z}{\partial y} = \left[\phi_{1}^{1} (y + ax) \times 1 + \phi_{2}^{1} (y - ax) \times 1 \right]$$
 $\frac{\partial z}{\partial y} = \phi_{1}^{1} (y + ax) \times 1 + \phi_{2}^{1} (y - ax) = 0$

Using the given conditions, we have

 $a \left[\phi_{1}^{1} (y + ax) \times \phi_{2}^{1} (y - ax) \right] = a \sin y - 4$
 $\phi_{1}^{1} (y + ax) \times \phi_{2}^{1} (y - ax) = 0 - 0$

Solving the above face equations.

Adding $(x, y) = \sin y$.

 $\phi_{1}^{1} (y + ax) = \frac{1}{a} \sin y$.

Substracting $(x, y) = \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

The above condition becomes $x \approx 0$,

 $(x, y) = \frac{1}{a} \sin y$.

Then on integration the above equations of $(x, y) = \frac{1}{a} \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

q (8) = - 1 (054

1.(4) = 3 sny 1, (g) = 5 (sg muse gives p. 14+ix) = = (0.8(4+ax) Φz (y-ax) = = cos (y-ax) Thence from the a. Z= -1 (05 (y+ax) + 1 (05 (g-ax)) z= = (cos(y-ax)- 是 (os(y+ax)) particular Integral (p.I) we are considering the P.D.E $(a_0 D^n + a_1 D^{n-1} D^1 + a_2 D^{n-2} D^{\frac{1}{2}} - \dots - a_n D^{\frac{1}{2}}) z = g(x,y)$ ii, (F(D, D')) = g(x,y). In O.D.E, the same time we have the form f(D)y = g(x). $P \cdot \Gamma$ $Z = \frac{1}{F(o, o')} g(x, y)$ Here F(0,01) can be treated just like the operator F(D) in case of the o.p. = with constant coefficients. Theoram The general method for finding the P.I. If g(x,y) is a function of textey, then ie, $\frac{1}{D-mD'}$ $g(x,y) = \int g(x, (-mx)dx$.

Then after performing the integration we are

Now. as in ope depending upon the form of g(x,y) shorter methods are available the the particular integral which are discussed as case 1

When g(x,y) is of the form $g(x,y) = e^{ax+by}$.

 $\frac{P \cdot \Gamma = \frac{1}{F(P,0)}}{ax + by} \quad [D = a, D' = b]$

= $\frac{1}{F(a_1b)}$ eax $f(a_1b)$ $\neq 0$

Jf f(a,b) = 0, then f(0,0') must have a factor of the type (bD-a0'). In this case the p-1 is obtained by using the particular formula ite R-1

 $p \cdot 1 = \frac{1}{(b - a D')^7} e^{ax + by}$

 $p \cdot f = \frac{x^{\gamma}}{b^{\gamma} \gamma!} e^{ax + by.}$

Hote:

If in the case of f(a,b)=0 be it cannot be converted to the form $(bo-ao')^7$

Then the P. I can be obtained by partially differentiating the donominator with D or D' and simultaneously multiplying to numerator by and

where $f'(a,b) = \left[\frac{\partial}{\partial D} f(0,0')\right] \neq 0$. 100, when g(x,y) is of the form g(x,y) = (as (ax+by) 00 5in (ax+by) $P:I = \frac{1}{F(0,0p,0^{2})} \cos(\alpha x + by) \cdot r \sin(\alpha x + by)$ g(x)= Cosax ur snax. $D^2 = -a^2$ PI = Tosox orshan Do! = - ab. $D^{12} = -b^2$. If F(-a)=0 $p-I = \frac{1}{f(-a^2, -ab, -b^2)}$ (as farthy) or sin(axthy) $f(-a^2, -ab, -b^2) \neq 0$ If $F(-a^2-ab, -b^2) = 0$ P.I = \(\frac{1}{(b0 - a0')^7}\) (06(axtby) or sin (axtby). = ocr eastby or sin (arthy).

Note: If f(0°, DO', D'2) cannot be transformed to the form (bD-aD'), then we can proceed as the above case I.

```
① solve the following DE = 60^{2}D! + 1100!^{2} - 60')^{3}z = e^{5x469}
ans: The problem is algeady given in the s.f.
    A.E is, Found by putting
       D=M & D = 1.
   is, The A.E.
   F(m) = m3-6m2+11m-6=0.
      f(1) = 1 - 6 + 11 - 6
                                        1-6+11-6
       m=1 is a koof.
       (m-1) is a factor
    Then by synthetic division,
```

 $m^2 - 5m + 6 = 0$

$$M = 67 \int_{0.2}^{2} \frac{57}{25 - 24} = \frac{511}{2} \text{ or } \frac{5-1}{2}$$
 $M = 2$
 $M = 3$

$$CF = \phi_1(y+m_1x) + \phi_2(y+m_2x) + \phi_3(y+m_2)$$

$$CF = \phi_1(y+oc) + \phi_2(y+2x) + \phi_3(y+3x)$$

$$P.S = \frac{1}{F(D,D)} = \frac{1}{6x + by}.$$

$$= \frac{1}{D^3 - 6D^2 + 11 DD^{12} - 6D^{13}} = \frac{5x + 6y}{D^3 - 6D^2 + 11 DD^{12} - 6D^{13}}$$

$$= \frac{1}{5^3 - 6T5 (6+1) T5 T5 T6 - 6T6 - 6T$$

$$C \cdot F = \phi_{1}(y + \partial x) + \phi_{2}(y + x) + x + \phi_{3}(y + x).$$

$$P \cdot J = \frac{1}{F(D, D')} = ax + by.$$

$$= \frac{1}{(D - \partial D')(D - D')^{2}} = e^{x + y}$$

$$= \frac{1}{(D - \partial D')(D - D')^{2}} = \frac{1}{(D - \partial D)(D - D')^{2}} = \frac{1}{(D - \partial D)(D - D)^{2}} = \frac{1}{(D - \partial D$$

Ptere converting F(D,D') into the form (bD-aD') is not simple. So we are going to the method of differentiation.

P.I =
$$x \cdot \frac{1}{(1-a)^2} = \frac{1}{2x^2} = \frac{1}{2x} = \frac{1$$

$$2\left[(-20)^{3}+(-20)^{3}\right]+2(0-0)^{3}=449$$

$$=\frac{\pi^{2}}{2}$$

$$=\frac{\pi^{2$$

Shorter Method for Anding P-I when geocial) is of the form $g(x,y) = \phi(axx + by)$ of (ax+by) i'e when gining is of the toom & canethy) ii, $p \cdot T = \frac{1}{\mp (D_1 D_1)} \Phi (ax + by)$. $=\int ... \iint \frac{1}{F(a,b)} \phi(v) dv \qquad v=ax+by$ $=\frac{1}{F(a,b)}\int \iint \phi(v) dv^n$ where is is the degree of the thomogeneous hunchon f (B, D'). & after performing the in tegration, ie $\phi(v)$ ntimes vis explaced by anthy $\exists e$, v = asctby

the above formula faily - In such cases of F(D,D!) must be factorised into factorised the formula to factorised into factorised the for (bo-adi). ie one P.I becomes

P·
$$\Gamma = \frac{1}{f(p,p')} \phi(a\alpha + by)$$

$$= \frac{1}{(bp-ap')^n} \phi(a\alpha + by)$$

$$= \frac{x^n}{n! b^n} \phi(a\alpha + by)$$

1) Solve, (D2+ 8DD'+2D'2) 2 = 2x+34.

and The problem is alteady in 5.1=.

$$A - E$$
, $D^2 = D^{12}$
 $D = m$, $D^1 = m 1$.

$$m = -3 \pm \sqrt{9-4x1x2}$$

$$= -3 \pm 1$$

$$= -2 \cdot 2 \cdot 3 - 1$$

$$= -1 \cdot 2 \cdot -2$$

```
Here, P.I = 1 (ax+by) (covered tox thy)
 = \frac{1}{D^2 + 3DD^1 + 20^2} + (2 \alpha + 3y) = \frac{1}{F(ab)} \int V dV dV
V = 2x + 3y.
         (b=a= 2, D'=b=3]
     = \frac{1}{2^2 + 3 \times 2 \times 3 + 2 \times 3^2} \int \int V \, dv \, dv.
     = \frac{1}{40} \int \frac{\sqrt{2}}{2} dy. 
                                 V 5 2 6 V
       = 1 Sv2dV
       = \frac{1}{80} \times \frac{\sqrt{3}}{3} = \frac{1}{240} \times (2x + 3y)^{3}
  in the complete solution
         2 = $\phi_1(g-x) + \phi_2(y-2x) + \frac{1}{240} (2x + 3y)^3
Solve

8F \Rightarrow 7 \Rightarrow 7 + 5 - 2t = \sqrt{2x+y} \sqrt{\frac{12 \cos 8e-3}{3\cos 4y}}

\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 2 \frac{\partial^2 z}{\partial y^2} = (2x+y)^{1/2}

\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 2 \frac{\partial^2 z}{\partial y^2} = (2x+y)^{1/2}
AE D2 + DD' - 2 D' = 6 x+y) 1/2
     Dem, pet not = 5 (5) 0 1. 1998 1 1 1 188
   m2+m-2 -0
              m= -1 ± J-1-4.4.1x-2 = -1±3
```

is cfie, z= p, (g+x) + \$\phi_2(g-2x)\ \frac{1}{f(p_1p_1)} \phi(axthy) $P: I = \frac{1}{F(D_1D^1)} \quad \phi \quad (aoctby).$ $= \frac{1}{D^2 + DD^1 - 2D^{12}} \quad (2x + y)^{1/2} \quad \phi \quad (y) = (2x + y)$ $p = a = a, \quad o' = b = 1$ $V = a \times a$ 32+2x1-2x12 (2xxy) 1/2 5 (v) 2x dv $= \frac{1}{4} \int \frac{y_2+1}{y_2+1} dy$ $= \frac{1}{4} \int \frac{\sqrt{3}|2}{3/2} dy$ $= \frac{1}{6} \frac{\sqrt{5}|2}{5/2}$ $= \frac{2}{12} \int \sqrt{8}|2| dy = \frac{1}{6} \frac{\sqrt{5}|2|}{5/2}$ $= \frac{2}{800} \sqrt{5}|2|$ $= \frac{2}{800} \sqrt{5}|2|$ $=\frac{2}{30}\left(2x+y\right)$ $\frac{1}{15} \left(2x + y \right)^{5/2}$ with (.s), z = (.F + PI)2 2 \$, (y+x)+\$2(y-2x)+ (2x+8) 5/2 (3) solve (02-2001+012) z = tan (4+x) AE, pom, pol m2-2m+1=0 m= =d+[4-4" = 12 do 1

$$P^{1} = \frac{1}{1 \cdot (P, D^{1})} + x \cdot \Phi_{2}(y+x)$$

$$= \frac{1}{1 \cdot (P, D^{1})} + \frac{1}{1 \cdot (P, D^{$$

date Module 1 Partial Differential Equation Continues) Method of Finding p. I when g(x,y) - x y n As discoused in the oridanas D.E, takoout the lowest degree learn from 1 (0,0') so as to reduce it in the form [1 ± F(0,0)] After that, take it to the numerators & get [1 + F(D,O)] " which is then expanded with the help of binomial theorem. of $g(x,y) = \alpha^m y^n$, then $[1 \pm F(0,0')]^{-n}$ is expanded in powers of o' if min & expanded in powers of Di if men. 1) Solve (D2-200'-15 012)z = 12 xy A.E = D=m , D=1 (m=-3,5) m2 - 2 m - 15 = 0. m= a ± s(-2)2-4x1x-18 = 2 ± 54 + 60 = $\frac{2\pm8}{2}$ $=\frac{2+8}{2}$ & $\frac{2-8}{3}$: m = 5 & -3

('F = p.(y +-3x) + p2 (y+5x)

//

$$= \frac{12 \left[\frac{23}{6} y + \frac{24}{34} \right]}{6}$$

$$= \frac{12 \times 3y + \frac{24}{12} \times 12}{6}$$

$$= 2 \times 3y + 24$$

2/4/16 Find the real function , v of x & 4, reducing to zero when y=0, and satisfying. $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial u^2} = -4\pi \left(\alpha^2 + y^2 \right).$

and there the real function V satisfying - the given equation can be obtained by Anding the P. E of the given eq. equation.

The symbolic of the given equation is (D2+D12) y=-4 # (x2+y2) $P \cdot \Gamma = \frac{1}{F(D, D')} g(x, y) = x^{m_y} n$ $= \frac{1}{0^2 + 0^2} - 4\pi \left(x^2 + y^2 \right).$ [1± F(D,D] $= -4\pi \frac{1}{D^{2} \left(1 + \frac{D^{12}}{D^{2}}\right)} (x^{2} + y^{2})$ ((+x)=1-x+x2x3 $= -\frac{4\pi}{b^2} \times \left[1 + \frac{D^2}{b^2}\right]^{-1} \times \left(x^2 + y^2\right)$ $= -\frac{4\pi}{h^2} \left[1 - \frac{D^{12}}{\Omega^2} \right] (x^2 + y^2)$

$$= \frac{-4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - \frac{D^{12}}{D^{2}} \left(x^{2} + y^{2} \right) \right]$$

$$= \frac{-4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - \frac{1}{D^{2}} \frac{x^{2}}{D^{2}} \right]$$

$$= \frac{-4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - \frac{1}{D^{2}} \frac{1}{D^{2}} \left(x^{2} + y^{2} \right) - \frac{21}{D^{2}} x \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -4\pi \left[\frac{1}{D} y^{2} \right$$

with hedrey to zero when y=0,

 $V = -2 + x \times x^2 \times 0 = 0$

```
rivading the method of Finding P.J
  when g(x,y) is of the form eax+by. V(x,y)
  g(x)(y) = e^{ax+by} V(x,y).

P \cdot 1 = \frac{1}{F(D,D)} e^{ax+by} V(x,y).

V(x,y).

V(x,y).

V(x,y).

V(x,y).

V(x,y).

V(x,y).
P. I = extby. 1
                 F(D+a, 0+b) V(x,y)
solve (02+00'-60'2) = y sin x.
    SF > D2f DD' - 60'2-
                                             m=2, -3
     D=m, D'=1
  :AE = m2+ m-6 =0
      m = -1 \pm \sqrt{1^2 - 4 \times 1 \times -6}
          = -1 ± 524 + 24 = -1 + 5 & -5
                          =\frac{4}{3} & -\frac{6}{2} = 2 & -3
(·f, 2= p, (y+2)c)+ $\phi$ \phi_2 (y-3x)
 p-I = \frac{1}{F(D,D')} g(x,y).
```

eix : cosxtisonal $P \cdot I = \frac{1}{f(p, p')} g(x, y)$ = I. p. of e xy $P \cdot I = \frac{1}{p^2 + 0p^4 - 6p^2} I \cdot P \cdot of e^{ix} \times y$ = I Pofe $(D+i)^{2}+(D+i)(D+0)-6(D+0)^{2}$ $(D+i)^{2}+(D+i)(D+0)-6(D+0)$ $(D+i)^{2}+(D+$ $= Ip^{6}e^{ix} \frac{1}{b^{2}+20i-1+00'+i0'-60'^{2}}$ = I.pofe ix 1 (D2-4+DD-6D'2)+(2iD+iD')-1 x y - y'x = I.P of eix 1 D2+OD-60'7 1 (2D+D')-1 moltistyrings by aring asitosimus (1± F(BD)) = -I.P ofeia 1 1 = [i(20+0')+02+00'-60'2] =- 1. Pofeix [1-(i(20+D')+D2+DD'-6012)]

```
=- [ p of eix[1+i(20+0)+0+00-60'2]g (-x)=14x+x4.
- - I.P of e (9+1 (2019)+0'(4))
                                   e'x cosxtisinx
 = -19 of e'x [y+i(1)]
= -I.P of ((os.x + isinx) (y+i)).
= -I.P of [y cosx + i cosx + isinxxy + i2 sin 21]
  Excess + yorx - sex
= - ( y sin x + cosx.)
Solve (02 € 00'-20'2) z = (y-1) e.x.
        D=m, D'=1.
       m^2 + m - 2 = 0
         m= f1 ± J12-4x1x-2
            = +1 ± JI+8
           = +1+3 &+1-3 = $ 6-2=
 (.f " z= p, (y-x) + $2(y+2x).
  P. I = 1 F(D, D') e ax + by. V(x, y).
      = \frac{1}{D^{2} + DD^{1} - 2D^{12}} (y-1) e^{x}
    = e x+0y (D+1)2+(D+1) (D+0)-2(D+0)2(y-1).
```

$$= e^{x} \frac{1}{p^{2}+2D+1^{2}+ DD^{1}+0+D^{2}+0+D-2D^{12}} \qquad (y-1)$$

$$= e^{x} \frac{1}{D^{2}+1+2D-DD^{1}-D^{1}-2D^{1}-2D^{12}} \qquad (y-1)$$

$$= e^{x} \frac{1}{(1+(2D-D^{1}-DD^{1}+D^{2}-2D^{12})]} \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}-2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1-\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{1}+D^{12}-D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{1}-D^{1}-D^{12}-D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{1}-D^{1}-D^{12$$

(a) folice
$$(D^2D' - 2DD' + D'^2)Z = \frac{1}{x^3}$$

in $D \cdot 1$.

 $m^3 - 2m^2 + m = 0$
 $m (m^2 - 2m + 1) \cdot 0$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4$

1 1 1 7/97

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c-3c}{x^{3}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c}{x^{3}} - \frac{1}{x^{2}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c}{x^{3}} - \frac{1}{x^{2}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c}{x^{3}} - \frac{1}{x^{2}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \left(\frac{c}{x^{3}} + \frac{1}{2c}\right)$$

$$= \frac{1}{(D-D^{1})} \left(\frac{c}{ax^{2}} + \frac{1}{2c}\right)$$

$$= \frac{1}{($$

(5) Solve
$$\frac{3^{2}z}{3x^{2}} - \frac{3^{2}z}{3x^{2}y} - 2\frac{3^{2}z}{3y^{2}} = (2x^{2} + xy - y^{2})\sin xy$$

$$= (06xy)$$
And $\theta + \varphi \Rightarrow (D^{2} - DD^{1} - 2D^{12})z = 0$
And $\theta + \varphi \Rightarrow (D^{2} - DD^{1} - 2D^{12})z = 0$

And $\theta + \varphi \Rightarrow (D^{2} - DD^{1} - 2D^{12})z = 0$

$$= (m = -1, 2)$$

$$=$$

= 1 D-ap' [(x+c). sin(cx+x2) - cos(x+x2)]

$$= \frac{1}{D-2D^{1}} \int \left[(2-c) \left(-\frac{d}{dx}, \cos(cx+x^{2}) \right) dx \right]$$

$$= \frac{1}{D-2D^{1}} \left[(2-c) \left(-(\cos(cx+x^{2})) \right] + \left[\cos(cx+x^{2}) dx \right] \right]$$

$$= \frac{1}{D-2D^{1}} \left[(c-x) \left(\cos(cx+x^{2}) \right) \right] + \left[\cos(cx+x^{2}) dx \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c$$

$$P = \frac{\partial z}{\partial x} = Z_{\alpha}, \quad q = \frac{\partial Z}{\partial y} = Z_{y}$$

$$\hat{r} = \frac{\partial^{2} z}{\partial x^{2}} = Z_{\alpha}, \quad g = \frac{\partial^{2} z}{\partial x \partial y} = Z_{\alpha}y.$$

$$\hat{t} = \frac{\partial^{2} z}{\partial y^{2}} = Z_{y}y.$$

order & Degree of a Partial D.E (P.D.E)

The order of a P.DE is the order of the higest partial derivative present in that equation.

the degree of a P.D.E, is the degree (power)

of the highest order partial derivative present

in the equation, when the equation has been made

rational a integral as far as the partial

derivatives are concerned. For e.g.:

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$$
; order = 1, degree = 1

$$\frac{\partial u}{\partial t} = \frac{\alpha \partial^2 u}{\partial x^2} + \sin \alpha$$
; order = 2, degree = 1

$$\left\{ \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right\} y = \left(\frac{\partial z}{\partial y} \right) z ; order = 1 , degree = 2$$

The number of variables is the number of independent-variables in the P-D.E. For eg:

 $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} > u = f(t,x) = a variables.$

 $\frac{\partial}{\partial t} = \frac{\partial^2 \left[u_{xx} + u_{yy} + u_{zz} \right]}{\partial t}$ $\frac{\partial u}{\partial t} = \frac{\partial^2 \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right]}{\partial t}$

t, or, y, z -> independent

No of variables = $\frac{4}{4}$ variables u = f(t, x, y, z)

* Linear and non-linear P.D.E

Aux + Bugy + Cuyy + Dux + Elly + Fu-a: -

where A, B, C, D, E, F and & one given sunctions of & & 4 otherwise, the P.DE is said to be show-lines for eg:

 $Ou_1 = C^2 U_{\alpha \alpha}$. $\rightarrow linear (4)$

O Usca + ugy + U = Sin a. → linean!

@ uux + yuy + u = 1. -> non-linear.

@ uxx + uyy + u2 = 0. - non-breas.

+ Homogeneous & Non-Homogeneous p.D.E in the general p.D.I= (A) is homogeneous if G=0 for all x dy in the domain of the equation. otherwise it is said to be non-homogeneous.

Now we are arranging the eqn (A) are

$$A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial u}{\partial x \partial y} + C \frac{\partial u}{\partial y^2} + D \frac{\partial u}{\partial x} + E \frac{\partial u}{\partial y} + F u = C u$$

For humogeneous case G=0 the equation becomes -

$$\left(A\frac{\partial^2}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D\frac{\partial}{\partial x} + E\frac{\partial}{\partial y} + F\right)u = 0$$

$$Lu = o - B$$

where it's the differential operator ine $L = A \frac{\partial^2 y}{\partial x^2} + B \frac{\partial^2}{\partial x \partial y} + C \frac{\partial^2}{\partial y^2} + D \frac{\partial}{\partial x} + E \frac{\partial}{\partial y} + F$

Enday The Painciple of Super position.

If us us un be an infinite solutions of the equation B then $\sum_{n=1}^{\infty} c_n u_n = c_1 u_1 + c_2 u_2 + \cdots + c_n u_n$ converges and is differentiable term by term through out some domain of the independent variable, then the u = E coun is also a solution of equation (B) P-D E (5) with constant and variable coefficients. of the coofficient A, B, C, D, F&F in A a

all constants then the equation is said to be a P-DE with constant coefficients, othera it is a P-DE with variable coefficient

Eg: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \sin x \Rightarrow p \cdot p \cdot E \text{ with constant}$ Coefficients (constants)

2) x dru + y da = 1. > P. DE with variable coefficients contents

Formation of p.D.E.
Now we are going to form a p.p. !

Eleminating arbitrary constants eleminating arbitrary function.

comation by eleminating arbitary constants. suppose we have an equation f(x,y,z,a,b)=0where, 'a', and 'b' are arbitary constants. Let us consider z as a dependent variable and 'x' and 'y' are independent variable (ie, two independent variable). Now we are eliminating the two arbitary constant in ex 'a', b' in the equation (2) by substituting the suitable P. De Birative with respect to x & with respect to y. Then we get after elimination $\phi(x,y,z,p,q) = 0.$ which is a p.D.E of first order ie, equation @ & @ show that if the number arbitacy constants to be eliminated is equal to the roumber of independent variable, then we get a first order p.D.E. otherwise, if the no of arbitrary constants to be eliminated is more than the no f independent variable, we get a DDF of higher order- However, this higher

Note:

If the no of arbitary constants is more than two, then the obtained second order partial derivative to eliminate arbitary constant.

1) Find the P.D.E by eliminating the arbitrary constants a and b' from the following.

(a)
$$z = (x-a)^2 + (y-b)^2$$

(b)
$$z = ax + by + a^2 + b^2$$

an;

 $\frac{\partial^2}{\partial a} q = \partial (y-b) \Rightarrow y-b = \frac{q}{a} - \frac{3}{3}$ Substitution the construction

substituting the equisi @ \$ 3 in 1

$$\therefore z = \left(\frac{r}{s}\right)^2 + \left(\frac{q}{s}\right)^2$$

$$\frac{P^2}{4} + \frac{q^2}{4}$$

$$\frac{P^2 + q^2}{4}$$

of 12 ptq2 which is the required P.D.E with

(b) Zo ax + by + a2 +b2 — D

peretially wirto x.

 $\frac{\partial z}{\partial x} = a$

-> p= a -@

pifferentiating the eqn @ partially or r to y'

 $\frac{\partial z}{\partial y} = b =$ q = b -

substituting the equits @ & 3 in 1.

required pur DE with first order. PDE

Find the D.E for, all spheres, of fixed radius having their centres in the xxplan ans: The equation of the sphere with centre at (h, k, o) in the xy-plane & radius \$171 is given by.

 $(x-h)^2 + (y-k)^2 + z^2 = r^2$ Differentiating the proverally wir-to x

arbitary function

(1) x = f(x2-y2)

Differentiating the eqn (1) partially we retore.

$$\frac{\partial z}{\partial x} = f'(x^2 - y^1) \times \partial x$$
 $\Rightarrow P_1 = \partial x_1 f'(x^2 - y^2) \longrightarrow 0$

pifferentiating the eqn (1) partially we to y.

 $\frac{\partial z}{\partial y} = f'(x^2 - y^2) \times \partial y$.

 $\frac{\partial z}{\partial y} = f'(x^2 - y^2) \times \partial y$.

 $\frac{\partial z}{\partial y} = \frac{\partial z}$

```
Defendating the @ again puticilly wirbs.
  (6)-x),6-(6)+x),+);=6
         -1-x(h_1-x),b+3x(h_1+x),f=\frac{h\ell}{2\ell}
         p. of reservising the B paris addy w. r. ho y
        (Bi-x), b+ (Ri+x), t=d
               1x(bi-x), b·+ +x(bi+x), f = 36
     or sterentiating the @ partially w. o. hox
                 (B)- (B1-x) &+ (B1+x) + = x : NO
             1-5=1 (hi-x) b+ (hi+x) f=2
             0= 6b-xd: (=
2=bdfa+zhb-bdfx-zxd
(dbx-2h)b = (bbx-2x)d = fx th 82x2d
               (x74-250) FB = (HDA-201) Dol
           (1000 21 h) b= (Hehrz)x)d
  \frac{\partial hx - zx}{\partial hx - zh} = \frac{b}{d} = \frac{(bh-z)x}{(dx-z)h} = \frac{b}{d} \in \frac{\Theta}{\Theta}
             (E) - \left(\frac{2}{bh-2}\right) \left(\frac{2}{hx}\right)_1 f \times 3 \pi = b 
b = \frac{Re}{Ze}
\left[\frac{2}{b \times h \times - (1 \times 1) \times 2}\right] \left(\frac{2}{h \times 1}\right), f = b

\frac{\int \frac{he}{2\rho} \times (hx) - (hx) \frac{he}{e} \times 2 \int (\frac{2}{hx})_1 f = b
```

(i)
$$y = \frac{\partial^2 z}{\partial x^2} = f''(x+iy)x1 + g''(x-iy)x1$$
 $y = f'''(x+iy) + g'''(x-iy)$

Pifferentiating the Greatist sespects to y.

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f'''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}{\partial y^2} = i f'''(x+iy)xi - g'''(x-iy)x - i^2$$

$$f''' = \frac{\partial^2 z}$$

 $\frac{\partial x}{\partial z} + 0 + \frac{1}{c^2} \left(\partial z \frac{\partial z}{\partial x} \right) = 0 \Rightarrow \frac{\partial x}{\partial z} + \frac{1}{c^2} \left(\partial z \frac{\partial z}{\partial x} \right) = 0$ In this problem the number)iff the partially w. o. to y

0 + 2 (dy 7. 2) 20

of arbitary constants to be elimenated = 3, which is greater than the number of independent variable which equal to a 190,40

ie;
$$\frac{1}{\sqrt{2}}\left[z - \frac{1}{\sqrt{2}}\left(\frac{\partial z}{\partial x}\right) + \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial y}\right] = 0$$

if $\frac{1}{\sqrt{2}}\left[z - \frac{1}{\sqrt{2}}\left(\frac{\partial z}{\partial x}\right) + \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial y}\right] = 0$

Since $\frac{1}{\sqrt{2}}\left[z + \frac{\partial^2 z}{\partial y \partial x} + \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}\right] = 0$

Since $\frac{1}{\sqrt{2}}\left[z + \frac{\partial^2 z}{\partial y \partial x} + \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}\right] = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{\partial y}\right] + \frac{\partial^2 z}{\partial y} = 0$.

Which is $\frac{1}{\sqrt{2}}\left[z - \frac{\partial^2 z}{$

Flimmating the f'(x) and g'(x) from in eqn (1) with the help of the eqn (1) (2) (3).

If $f'(x) = \frac{p - g(y)}{y}$, $g'(g) = \frac{q - f(x)}{x}$ $S = \left[\frac{p - g(y)}{y}\right] + \left[\frac{q - f(x)}{x}\right]$ The S = x(p - g(y)) + y(q - f(x)) xy

S = xp - g(y) + gy - g(x)

from eqn \mathcal{D} $Z = Y \times f(x) + X \times f g(y)$.

 $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = y \{f(x)\}$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y) = \frac{y}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy - x} x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$ $xy \cdot S = \frac{px}{xp + qy} x y - x g(y)$

Formation of PDE by eliminating the axbitary function of from the equation ϕ' from the equation $\phi'(u,v) = 0$, where use are the function of $x \approx x$ and $x \approx x$.

Here u, v are the two functions containing the '3' independent variables x, y & z. and 'p' is an arbitary function.

By elionenating the arbitary function p

from the selation $\phi(u, v) = 0$ we get

a first order pipit in p, 2 and with 1s the functions of the Brindependent vaniables a, 4 &z where \$100 and \$10

$$P = \frac{\partial u}{\partial y} \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial y}$$

$$R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} - \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}$$

$$R = \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial u}{\partial x} \frac{\partial v}{\partial x}$$

16/3/16 rednuda

= 0

an

De Find the DE of all planes which are at a constant distance from origin.

ans. The equ of all planes which are at a constant distance 'k' units from origin takes the form, lext mythz=k-10 where 12 +m² + r² = 1²

Differentiating ① with respect to x & y

 $14 + n \frac{\partial z}{\partial x} = 0 \Rightarrow 14 + np = 0 - 0$ $n + n \frac{\partial z}{\partial y} = 0 \Rightarrow n + nq = 0 - 0$ eliminating

eliminating L, m, and n using D, QdE Decomes (-np)x+(-nq)y+nz=kJ124m24n2 $n(-pnc-qy+z) = kJ(-np)^2 + (-nq)^2 + n^2$ $n(-pnc-qy+z) = knJp^2 + q^2 + 1$

Z= px+qy+ kJp2+q2+1, which is partial D. T= of first order.

Note: In all of the above eggs the number of arbitary constants is equal to the number of dependent variables. Hence the partial D. F. s.) are of first order.

uedanday Continues

- ontains two dispitary function & then in general there elimination wil give a second order P. D.E
- of the arbitrary function, are more than a then we need the higher order proprivations for elimination.
- The relation $\phi(u,v) = 0$ involving the arbitary function ϕ can be woilten in another form like $\phi(u) = \phi(v)$ or $v = \phi(u)$

after elimination of the arbitary function of we get a first order ra p &q is of the form Pp+ Qq= R $P = \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \cdot \frac{\partial v}{\partial y}$ -p = ay x az -az x (-x) P = 4yz + axz $9 = \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial z} - \frac{\partial z}{\partial z} \cdot \frac{\partial z}{\partial z}$ = 22 x(-y) - 2x,22 = - 2yz - 4xz = Q = -(2yz + 4zz) $R = \frac{\partial u}{\partial x} \cdot \frac{\partial v}{\partial y} - \frac{\partial u}{\partial y} \cdot \frac{\partial v}{\partial x}$ 2x.x(x) - 2yx(-y) = -2 x2 + 2y2 $R = \lambda \left(y^2 - x^2 \right)$ The required P.D.E is of the form production

 $(4yz+axz)p + -(4yz+axz)q = 2(y^2-x^2)$ $(4yz+xz)p - (yz+axz)q = y^2-x^2$ which conditions function of seem x. 4.7 = of (x+y+z)

ani: The given relation is of the form,

where
$$u = \phi(v)$$

$$v = x + y, z$$

$$v = x + y + z.$$

after elimination the arbitary function of from the given relation we get a tirst order p.p.E is of the form Pp+Qq=R.

$$p = xz - xy$$
 $\Rightarrow p = x(z-y)$

$$Q = \frac{\partial u}{\partial z} - \frac{\partial v}{\partial x} - \frac{\partial u}{\partial x}, \frac{\partial v}{\partial z}$$

$$= xy \times 1 - yz \cdot 1.$$

$$\varphi = \chi y - yz$$
 $\Rightarrow \varphi = y(\chi - z)$

$$R = yz - xz$$
 $\Rightarrow R = z(y-z)$

After elimination, the required p-D.E is of the form,

which is a p.p. ε of first order.

Solution of first order P.D.E's

Before going to solve a p.D.E we have to eliscuss about some kinds of solutions of P.DE.

o complete integral.

we have seen that the elimination of the carbitary constant from the relation Regret

f(x,y,z,a,b) = 0. \triangle

aires the following P.D.E

If the equation (1) is derived from the equation (1) by any method. Then the equal which contains the asbitaly constant that are equal to the number of independent valuable is called The complete the integral of the equation (1)

@ Particular Integral

A particular integral of the eyn is obtained by giving particular values to the constants as b in the complete integral.

3 heneral Integral
The elimination of the debitacy function of

from the relation of (u,v)=0, where u and v are the function of the 3 independent variables x, y, & z gives a linear p.p.E of the form, $p_p + Q_q = R$, if we say that $\phi(u,v)=0$ is the solution of the p.p.E, $p_p + Q_q = R$, then it q is known as the general in tegral.

Bringular Integral

the envelope of the surface of the equation f(x,y,z,a,b) = 0 — A is obtained by eliminating

the arbitrary constants a & b from the equ

the arbitrary constants a & b from the equ

the above equippers a relation blue x,y,azwhich is called the singular integral.

Let the complete integral be f(x,y,z,a,b)=0 and let us assume that one of the arbitrary constant be a function of other say $b=\phi(a)$, then one equ becomes f(x,y,z,a,b)=0 the general integral is obtained by elimenating the arbitrary constant a from $f(x,y,z,a,\phi(a))=0$ & $\frac{\partial f}{\partial a}=0$. This eyn gives the curve of intersection of two constants surfaces given by the relation $f(x,y,z,a,\phi(a))=0$

This carre is known as the envelope of the family

Lagrange's Method.

ionsider a first order P.D.E Ppt Qq=R which is linear in pand a were Piquer x, y, z. The procedure for the are junction of used for finding u av as me large method is above P.D.E solution of the

The General Solution of the Linear P.D.E PptQ=P. is $\phi(u,v)=0$, where ϕ is an arbitary fined, and u, v are the function of 3 independent yaniable 2, y 62 ie; a(x,y, Z) - E& u(x,y, Z) are the two independent solution of the

Lagranges auxillary equation dx = dy = dz

1: - de de 1902an " price

working Rule To obtain the solution of PDE, Pp+Qq=R from the Lagranges auxillary equation.

P & rind two independent solutions of these auxilliary: equation as u(x, y,z)=c and V(x, y, z) = c2 and the general solution of PDE Prtag=Riis given by one of

the following toxms p.(a, V) = 0 011

 $u=\phi(v)$, $v=\phi(u)$.

two independent In order to obtain the Solution are use the Sollowing mothods.

p stethed of grouping (autor) suppose that one of the variable as either object or cancel out from any pair of the fractions of da dy de and then a solution can be obtained by using usual methods. To earne procedure is repealed with another poin of fraction of the above equation for I'd in independent solutions.

(i) Methods of multipliers (Rule 2.)

If I, m, n are the three multiplies then by a were none principle of algebra each fraction of ean dx dy 2 dz will be canal to ldx + mdy + ndz

If it is possible to choose limin such that lp+mQ+nR=0. Then Idx+mdy+nd2=0. which can be integrated to give a (31,4,2)=c The method may be repeated to get another independent solution v(sc, 4,2) = C2, The multiplier may be henchions of x, y, 2)/constant Some times, it is required to Bind only one solution using multipliers.

* NOte-1 solution of the eqn dx = dy odz is If one

ant determined by rule-1 & suppose that we and to determine the and solution by rule of mule a then that solution known to as is used to find the another independent solutions.

Hote-2

Je one solution is found that g(x,y)=c,

then the constant c, should be ased.

in the plages of g(x,y) throughout the

process of calculating free and solution are

finally when and solution is found involved.

(1) then C, should again be replaced by g(x,y)

Alle y2 Zp + x2 Zq = xy2 · T

The given eqn is of a lagrange's D. E

of the form Pp + Qq = R

and the Lagrange $P = 13 \left[\frac{dx}{P} = \frac{dy}{R} = \frac{dz}{R} \right]$

 $P=y^2z$, $Q=x^2z$, $R=xy^2$

 $\frac{dx}{y^2z} = \frac{dy}{x^2z} = \frac{dz}{xy^2} \quad (A \cdot E)$

taking the first two ratio, we get

 $\frac{dx}{y^2/x} = \frac{dy}{x^2/x}$

a'da y'dy then on integration we get for 2.19 . Sy' dy 73 J3 1C x 3 y3 , C \$: x 3 y 3 3 3C. C1: 30 : x3-y = C, which is one first independent solution of the form u(x,y, x) = + c, FOR getting the second independent solution we have to take the fixst & third ratio $l'e, \frac{dx}{y^2z} = \frac{dz}{xy^2}$ $\frac{dx}{z} - \frac{dz}{z} \rightarrow x dx - z dz.$ Thon on integrations we get Soda = Szdz. $\frac{x^2}{2} = \frac{z^2}{2} + c$ $\frac{\chi^2 - \chi^2}{2} = C \Rightarrow \chi^2 - \chi^2 = QC.$ 21=12 => x2-Z2=62.

which is our second independent solution

Then the general solution \$ (4, V)=0. ie, $\phi(x^3-y^3, x^2-x^2)=0$ @soive ptanx +atany = tanz and The given eqn is a Lagrange D.E. is of the form Pp + Qq = R. Then the Lagrange A.E are $\frac{dx}{P} = \frac{dy}{0} = \frac{dz}{R}$ $\frac{dz}{\tan x} = \frac{dy}{\tan y} = \frac{dz}{\tan z}$ For getting the first indepent solution We are taking the first a Ratio Then on integration fax = fay tang ien Scot ade = Scoty dy ie log sint = log siny +log of Scotteda: c'e, log sinx = log (c, * siny)

= logiul +c

Sin x = C, siny

which is out Arst independent sing of which is out that indep $U(\alpha, y, z) = c$ forgetting the and independent words, we gave taking and & 3rd Ratio dy = dzThen on integration Sdy = Sdz tonz log atlogs Scotydy - Scot z dz clogab log singt = log sinz + log Cz log sing = log (c2 Sinz) Siny = Cz Sinz $\frac{Sing}{Sinz} = C_2$ which in our 2nd $\frac{Sing}{Sinz}$ independent solution is $\frac{1}{2}$ of the form $V(x,y,z)=C_2$ Then our general solution of (u,v) =0. ie $\phi\left(\frac{\sin x}{\sin y}, \frac{\sin y}{\sin z}\right) = 0$ 3 Solve xp+ yq = 3z.

Solve x2ptyq = Z2

inx sade

form

(solve. p-q - log (218) one: The given ean is a lagrang DE is of the form $P_p + R_q = R$ The Lagrange A.E. is dr = dy = dz $\frac{dx}{1} = \frac{dy}{-1} = \frac{dz}{\log(x+y)} = 0$ for getting the 1st independent solution are are grouping the firsts second Ratio $\frac{dx}{1} = \frac{dy}{-1} \Rightarrow dx = -dy$ Thon on integration we get, Sax = f dy $x = -g + C_i$ $x+y = C_i \quad \text{which is}$ $x+y = C_i \quad \text{which is}$ $x+y = C_i \quad \text{which is}$ For getting the second independent solution grouping the first & third ratio

ie, $\frac{dx}{1} = \frac{dz}{\log(\alpha t y)}$ from 0 >> dx = dz

log C1

log 4 dx = dx Then on integration, we get Slog C, dx = Sdz x logg = Z + C2

ie x log(x+y)-z=2 which is one and independent solution of the ((x, y, z) = <2 The general solution is of the form fru, v) = 6 ie p (x+y, x log(x+y1-z) =0. Solve 22 (y,z) p+ y2 (z-x)2 = z2 (x-y) The Givenego is a Lagrange D.E 15 of the form Pp + Pq = R $\frac{\partial x}{\partial x} = \frac{\partial x}{\partial y} = \frac{\partial z}{\partial z}$ ie $\frac{dx}{dx} = \frac{dy}{z^2(x-y)} = \frac{dz}{z^2(x-y)}$ $x^2(y-z)$ $y^2(z-x)$ By rethod of multiplieons lax +mdy + ndz

By ruthord of multiplieons lax +mdy + ndz

Fockung for getting the 2 independent lp+ma+nx \frac{1}{2\frac{

 $\frac{dz}{x} + \frac{dy}{y} + \frac{dz}{z}$

$$\frac{da}{a} + \frac{dy}{y} + \frac{dz}{z}$$

considering this with any fraction in 1

ie,
$$\frac{dx}{x} + \frac{dy}{y} + \frac{dz}{z} = 0$$

Then on integration

$$\int \frac{dx}{x} + \int \frac{dy}{y} + \int \frac{dz}{z} = 0$$

loga + Logy + log z = log C,

xyz=G This is our one independent Solution of the form U(x,y,z)=C, =

$$x_p + y_q = 3z$$

The given equation is a Lagrange D.E.d. of the form Pp+Qq=R

Then the Lagrange A. E is

$$\frac{dx}{P} = \frac{dy}{R} = \frac{dz}{R}$$

 $\frac{1}{2} \cdot \frac{dz}{z} = \frac{dy}{y} - \frac{dz}{3z}$ For gelfing the Airst independent solution we are taking the fixet a xatio $\frac{dx}{x} = \frac{dy}{x}$ then on integration, sax = say ie logoc = logy + log cz. $\log x = \log(c_1 xy)$ $\alpha = c_1 g$ => $\frac{\alpha}{y} = c_1$ which is out first == independent solution is of the form u(x, y, z) = C1. Fox getting the 2nd independent variable we use taking and a 3rd matio $\frac{dy}{y} = \frac{dz}{2z}$ Then on integration, say = saz logy = 1, log Z + log 52 logy = 1/09 (C2xZ) $y = \frac{1}{3} o(C_2 \cdot Z) \Rightarrow \frac{3y}{2} = C_2$ which is our 2nd andependent solution As of the form V(x, y, z)= <2

Then the general solution \$(4, 1)=0 re, \$ (\frac{3}{y}, \frac{3y}{2}) =0 an. The given eqn is Lagrage DE is of the form Pp+ Qq 2 R. Then the Lagrange AZ 2's $\frac{dx}{p} = \frac{dy}{\rho} = \frac{dz}{R} \qquad p = x^2$ $\frac{1}{2} \frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{z^2}.$ Taking the first two Ratio $\frac{dx}{x^2} = \frac{dy}{dx^2}$ Then on integration sax zsay $\int x^{-2} dx = \int y^{-2} dy$ $\frac{\chi^{-2+1}}{-\delta+1} = \frac{y^{-2+1}}{-\delta+1} + C_1$ $-x^{-1} = -y^{-1}$ $-\frac{1}{\alpha} = -\frac{1}{4} + c,$

which is one first independent solution of the form $u(x,y,z)=C_1$ for getting the 2nd Independent solution taking and 2 3rd Ration

Then on integration $\int \frac{dy}{y^2} = \int \frac{dz}{z^2}$ $\int y^{-2} dy = \int z^{-2} dz$ $\frac{y^{-2}t}{-2t} = \frac{z^{-2t}}{-2t} + C_2$ $-\frac{1}{y} = -\frac{1}{z} + C_2$ $\frac{-\frac{1}{y}}{-\frac{1}{z}} = C_2 \Rightarrow \frac{1}{z} - \frac{1}{y} = C_2$

which is one second ind independent solution of the form $V(x,y,z)=C_2$ then the general solution $\Phi(\alpha, V)=0$ i.e., $\Phi = \left(\frac{1}{y} - \frac{1}{z}\right), \left(\frac{1}{z} - \frac{1}{y}\right) = 0$

continue.

For getting the 2nd independent solution we are choosing $\frac{1}{x^2}$, $\frac{1}{y^2}$ $\frac{1}{z^2}$ are multiplies then each fraction in ② will be equal to

$$\frac{dx}{\partial z} + \frac{dy}{y^2} + \frac{dz}{z^2} = \frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz}{z^2}$$

$$= \frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz}{z^2}$$

taking the above feartion with any faut. we get,

$$\frac{dx}{x^2} + \frac{dy}{y^2} + \frac{dz}{z^2} = 0$$

Then on integration we get

$$\int \frac{dx}{x^2} dx + \int \frac{dy}{y^2} + \int \frac{dz}{z^2} = 0$$

$$-\frac{1}{x} + -\frac{1}{y} - \frac{1}{z} = 0$$

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = -c_2$$

which is the and independent solution of the form V(x,y,z)= 02

Then the general solution is

(7) solre (ye+ze)p - xyq. + xz =0

Then the lagrange $A \cdot E$ is $\frac{dx}{dx} = \frac{dy}{dx}$

$$\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$$

-c2 = C2

 $\frac{dx}{y^{2}+z^{2}}=\frac{dy}{-\alpha y}=\frac{dz}{-\alpha z}$ we are laking the second & third fraction $\frac{d\theta}{-xy} = \frac{dz}{-xz}$ ie, $\frac{dy}{y} = \frac{dz}{z}$ Then on integration we get $\int \frac{dy}{y} = \int \frac{dz}{z} \qquad logy = logz + log \leq 1$: logy = log (c, = z) :. y = C, xZ $\frac{y}{z} = c_1 = 0$ which is the first independent solution of the form u(x,y,z) = c1. · For getting the and independent solution, we we choosing x, y, z are multiplies Then each fraction in @ will be equal adx + ydy + zdzx(42+22) + y(-xy)+ Z(-xz) = xdx +ydy + zdz

ie
$$ncdoc + ydy + zdz = 0$$

Then on integration fide + sydy + fedz = 0

$$\frac{\pi^2}{a} + \frac{y^2}{2} + \frac{z^2}{a} = C_2$$

$$\frac{x^2 + y^2 + z^2}{a} = C_2 \Rightarrow x^2 + y^2 + z^2 = 2C_2$$

$$\alpha^{2} + y^{2} + z^{2} = C_{2}$$

which is our and independent substitute of the form $V(x,y,z) = C_2$

$$\frac{1}{2} \quad 9(u, v) = 0$$

$$\phi\left(\frac{y}{z}, x^{2+g+4}z^{2}\right) = 0.$$

& Solve
$$xydx + y^2dy = zxy - 2x^2$$
.
which is a Lagrange D.E. of the form
$$P_p + Qq = R.$$

& the language A.E is
$$\frac{dx}{p} = \frac{dy}{dz} = \frac{dz}{R}$$
.

ie, $\frac{dx}{ry} = \frac{dy}{y^2} = \frac{dz}{dz} = \frac{1}{2xy-2x^2}$

For getting the first independent solution we are choosing the first two frather we get $\frac{dz}{zy} = \frac{dy}{gz}$

Then on integration we get fax = fdy log x = logy + log C, logx = log(yc) : 2 = 4x c, => 2 = G4 which is first independent whiten of the form $ad(x,y,z) = C_1$. very fore first independent solution we are very il For that we goed taking the 2nd a god fraction $\frac{dy}{4z} = \frac{dz}{2xy-2xz}$ dy = dz - 2c,42 - 2c,42 $\frac{dy}{yz} = \frac{dz}{yz(z(1-2\zeta_1^2))}$ dy = dz $dy = \frac{dz}{G(z-\partial G)}$ Then on integration use get Sc, dy - Stz-ac,

 $C_{1}y = \frac{1}{\sqrt{2}} \frac{\log(z-RC_{1}) + \log C_{2}}{(z-2C_{1})}$ $x = \log (z-2C_{1}) + \log C_{2}$ $x = \log (z-2C_{1}) + \log C_{2}$ $x = \log (z-2C_{1}) + \log C_{2}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $x = \log (yz-2C_{1}) + \log C_{2}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$ $y = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{$

the

Fa

ie our 4.5 $\phi(u, v) = 0$ $\phi\left(\frac{x}{y}, \frac{y e^{x}}{yz - 2x}\right) = 0$

and The give eyn is a Lagrange D. R. is of the form $P_p + Q_q = R$.

Then the Lagrange AR is $\frac{dx}{P} = \frac{dy}{q} = \frac{dz}{R}$ i'e $\frac{dx'}{1} = \frac{dy}{-2} = \frac{dz}{3x^2 \sin{(y+2x)}}$ for getting the 1st independent solution we are taking the A's st two fraction $\frac{dx}{1} = \frac{dy}{-2} = \frac{dy}{-2}$

ilx 2dx = -deg

```
there on integration, we get to die - f-dy
               2x + y . C, (2)
          is our first independent solution
 of fore form a(s(,4,2) = c,.
los the ffing the and independent solution
we have to make use of ast independent
  colution, fox that we are taking the Ist
 and god frathon
                                  19t2x= 2
               3x2 sin (y+2x)
       dx = \frac{dz}{3x^2 \sin C_1}
       3002 Sin C, dx = dz,
Then on in legeration we get; Sara sinc, dr=sdz
       3 Sin C1 = Z+C2
      x^3 sin c_1 = z + c_2
      x^3 \sin \zeta - Z = C_z
     x3 Sin (y+2x)-Z=C2 -3
 which our and solution of the ham
  $ V(x,y,z) = C2,
Trun the G.s, p(u, v)=0 ie p(2x+y, x3sin(y+ax)-z)
```

```
e are laking the third & last
                                 fraction
      itz x dx+ ydy+zdr
               x'(x^2ty^2+x^2)
     dz = a(xdx + ydy + zdz)
                  22+42+22
   dz = ardx + oydy + 2zdz
                   22+y2+x2
 Then on integration, we get,
                                         u= x2+y2+ z2
  Jdz = f2xdx + Qydy + Qzdz
x2+y2+z2
                                         duza redat
                                            24 dy+2 rd
  log = log(x2+y2+z2) + log c2
                                           Sdu = log(u)
  : logz = log (6x2+y2+z4x (2)
   : Reve 22+22 = C2 -3)
 which is one and independent solution. Then
  as is of the form of (u,v)=0
  ie, : \phi\left(\frac{y}{z}, \frac{z}{x^2+y^2+72}\right) = 0
solve (y+z)p+(z+x)q = xty
      given ean is a fixst oxdex Lagrange DE
thes
  of the form Pp+ Qq=R
 Then the Lagrange AIE is \frac{dx}{p} = \frac{dy}{n} = \frac{dz}{p}
     ie \frac{dx}{g_{+}z} = \frac{dy}{z_{+}x} = \frac{dz}{x_{+}y}
```

for getting two solutions the method of georging & multipliers are difficult TON 6 some way so, we are setting some ofthe fractions to 1 $\frac{dx}{y+z} = \frac{dy}{z+x} = \frac{dz}{x+y} = \frac{dx-dy}{(y+z)-(z+x)} = \frac{dy-dz}{(z+x)-(z+y)}$ doi+dy+dz 417+2+2+2+4 $\frac{dz}{x+y} = \frac{dx-dy}{y-x} = \frac{dy-dz}{z-y} = \frac{dx+dy+dz}{z(x+y+z)}$ Fox getting me first independent solution we are taking in 4th & 5th ratio $\frac{dx-dy}{x-y} = \frac{dy-dz}{y-z}$ then on integration $\int \frac{dx - dy}{x - y} = \int \frac{dy - dz}{y - z}$ (du = 10914 · log (x-y) = log (y-z) + logc, log (x-y) = log((y-z) x (4) $x-y = y-z \times c_1 = \frac{x-y}{y-z} - c_1 - c_2$ which is the ist independent southor of the for with

fourth and \$18th ration (4th &6"1)

$$\frac{dx-dy}{4x} = \frac{dx+dy+dz}{2(x+y+z)}$$

$$\frac{2x-dy}{-(x-y.)} = \frac{dx + dy + dz}{2(x+y+z)}$$

$$\log (x-y)^{-2} = \log((3c+y+z)xc_2)$$

$$(x-y)^{-2} = ((x+y+z) \times c_2)$$

then the a.s is of the form $\phi(u,v)$ -s

ie
$$\phi\left(\frac{x-y}{y-z},\frac{1}{(x-y)^2(x+y+z)}\right)=0$$

Genoralized form of Lagrange's Method.

Let the oth order Lagrange equation is of

the form P,p, + P2p2 --- + Popo = R

when
$$p_1 = \frac{\partial z}{\partial x}$$
, $p_2 = \frac{\partial z}{\partial x_2}$. $p_3 = \frac{\partial z}{\partial x_3}$

P1, P2.... Pn and R are the functions of

I, x2-- xn &z then the nth order

Lagrange A.E become, $\frac{dx_1}{P_1} = \frac{dx_2}{P_2} = \frac{-dx_0}{P_2} = \frac{dz}{P_2}$

Then el, = c, M2 = C2 ... , Ho= Cn. her n' independen solution of the above 1.E then the a.s is \$ (ux, u2---un) =0 1 Solve $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = xyz$ an: Here the Lagrange 1-E is $\frac{dx_1}{p_1} = \frac{dx_2}{p_2} = \frac{dx_3}{p_3} = \frac{du}{R}$ ie $\frac{dx_0}{P_1} = \frac{dy}{P_2} = \frac{dz}{P_3} = \frac{du}{R}$ $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z} = \frac{dy}{xyz}$ Forgething the 18 solution we are taking the 1st & 2nd ratio $\frac{dx}{dx} = \frac{dy}{4}$, Then on integration Sax = Say i'e logx = leg y+ legg C, logx = log (xr,) ie x = y(,) = = c, -2 togething the and solution we are taking the and & 3 od ratio dy adz Then on integration Sdy 2 sdk 2) logy= logz plog &

y = zxcz => y = ccz - 3)

whose is the and independent solution.

ton getting 3rd solution we are taking

yz, zx, zy as multipliers in 0

 $\frac{yzdx}{xyz} + \frac{z \times dy}{xyz} + \frac{xydz}{xyz} = \frac{yzdx + zxdy + xydz}{3xyz}$

Now we are taking a with the last fraction

 $yzdx + zxdy + xydz = \frac{dy}{xyz}$ yzdx + zxdy + xydz = 3du d(xyz) + d = 3dufrom on integration we get

 $xyz = 3u + c_3$

which is the g od independent solution. Thus the u's is $\phi(u_1, u_2, u_3) = 0$ ic $\phi(2\zeta, \frac{y}{z}, \frac{y}{z}, \alpha yz - 3u) = 0$

homogeneous PDE 28/9/16 Solution of higher order Hordey with constant coefficient An equation of the form $a_0 \leftarrow \frac{\partial^n z}{\partial x^n} + a_1 \frac{\partial^n z}{\partial x^{n-1} \partial y} + a_2 \frac{\partial^n z}{\partial x^{n-2} \partial y^2} + \cdots$ called the higher order P.D.E with constant coefficients. then by replacing 0 for $\frac{\partial}{\partial x}$ and 0' for $\frac{\partial}{\partial y}$ $\left[a_0 \ b^n + a_1 \ b^{n-1} b' + a_2 \ b'^{n-2} b'^{2} + \cdots + a_n b'^{n}\right] z = g(x,y)$ F(0,0) = g(x,y)the solution of equation 1 consisting of two part (i) The complementary function (c.f) which is the complete solution (c.s) of the equation F(P,D)z=0 It must contains in arbitrary function, where in is the order of the D.E. (ii) The Particular Integral (P.I) which is the particular solution (foce from abitary functions) of the equation F(D, D')z=0. The complete solution (r.s), C.S = C.F+P.I (D)0). *

For finding C.F. (when the power of D'must be > D) For finding C.F, we are putting D=m&D'=1 in the egn ronn - not al .

```
the we get,
  a_0 m^n + a_1 m^{n-1} + a_2 m^{n-2} + \cdots + a_n = 0
         F(m, 1) = 0.
   Then @ is called the auxillary equation (4.E) of
   the equation 1
  of my ma man are the distinct roots of a
  if m, m, m, are distinct then the c.F
     C = \phi_1 (y + m_1 x) + \phi_2 (y + m_2 x) + \dots + \phi_n (y + m_n x)
  Note:
  If m_1 = \frac{a_1}{b_1}, m_2 = \frac{a_2}{b_2}, m_1 = \frac{a_1}{b_1}
     C = \phi_1(b_1y + a_1x) + \phi_2(b_2y + a_2x) + a_n(b_ny + a_nx)
  Case 2
  If one root mis repeating. Then the ciris
  (F = \phi_1(y+m_0x)+x\times\phi_2(y+m_0x)+\dots+x^{k-1}\phi_k(y+m_0x)
  Remark 1
 If the power of D' is greater that the power of D.
   the 1.E can be found by putting D=1 & D'=m
   in the equation 1
  The cif can be written by exchanging x by.
 * Remark 2
  If the power of D&D' are the same then the
  A.E can be found by either putting
(i) D=m & D'=1  (ii) D=1, & D'=m.
```

1) Solve the P.D.E 21x -21x -0. ins: The Symbolic form (ST) can be written by replace D for 2 & D' for d ie (D4 - D14) = 0. Now we are writing the Auxillary Equation (A.E. by putting D=m & D'=1 The 1E is, m4 - 14 =0 Then solving form m'. $(m^2-1^2)(m^2+1^2)$ $m=\pm 1$ $m=\pm i$ is The xoots of m = 1, -1, i, -i m_1, m_2, m_3, m_4 The complementary function CF, CF= 0, (y+m,x)+02(y+m2x)+03(y+m3x)+04(y+mx $CF = \phi(y+x) + \phi_2(y-x) + \phi_3(y+ix) + \phi_4(y+ix)$ 3 Solve (D3 - 402 D' + 4 DD =) z =0. an: 8F, $(D^3 - 4D^2D' + 4DD'^2) = 6$ D > D' A = D = m, D' = 1. The AE is, m3-4 m2+ 4m 12 =0 $m^3 - 4m^2 + 4m = 0$

$$m(m^{2}-4m+4)=0$$

$$m=0, m^{2}-4m+4=0$$

$$m=\frac{4\pm \sqrt{4^{2}-4x_{1}x_{4}}}{2\times 1}$$

$$=\frac{4}{2}=R, \cdot 2$$

$$=0, 2 2$$

$$= \phi_1 (y + m_1 x) + \phi_2 (y + m_2 x) + x \phi_3 (y + m_2 x)$$

$$= \phi_1 (y) + \phi_2 (y + 2x) + x \phi_3 (y + 2x)$$

$$4m^2 + 12m + 9 = 0$$
 or $(2m + 3)^2 = 0$

$$M = -\frac{3}{2}, -\frac{3}{2}$$

$$m = -\frac{3}{2}, -\frac{3}{2}$$
 $m_0 = \frac{a}{b} = -\frac{3}{2}$

putting $a = -3, b = 2$

$$z = \phi$$
, (by + ax) + x ϕ_2 (by + ax).

$$C.F = \phi_{1}(bx+dy) + y\phi_{2}(bx+dy)$$

$$C.S : \phi_{1}(3x-\partial y) + y\phi_{2}(3x-\partial y)$$

$$C.S : \phi_{1}(3x-\partial y$$

```
Here CF, Z= p(y+m,x) + $\pa_2(y+m_2x) + x $\phi_3 (y+m_2x)
   z= $\phi_1(y) + $\phi_2(y+\frac{1}{2}x) + \alpha \phi_3(y+\frac{1}{2}x)
  == 0, (g) + 02 (2y+x) + x 03 (sy+x)
I solve \frac{\partial^2 z}{\partial x^2} = a^2 z, given that \frac{\partial z}{\partial x} = a sing, &
\frac{\partial z}{\partial y} = 0 when \infty = 0.
The given B = is. \frac{\partial^2 z}{\partial x^2} = a^2 z = 0
ie, By seplacing 3 = 0.
A.E => Here in s.F, no D', So, D=m.
       m^2 a^2 = 0.
   (m+a) (m-a) = 0
     m =-a, M=+a. >m = ±a.
 .. The a.s is given by
 (Fie z= 0, (y+m,x)+ 02 (y+m2x).
    z = \phi_1 (y + ax) + \phi_2 (y - ax).
Now we are finding the 2x & dy by partially
differentiating the 1 w. s. to x & y.
  DZ = α .φ. (y+ax) + (a) φ2 (y-ax)
 = a [q'(y+ax) - \\ \partile 2'(y-ax)] -
```

$$\frac{\partial z}{\partial y} = \left[\phi_{1}^{1} (y + ax) \times 1 + \phi_{2}^{1} (y - ax) \times 1 \right]$$
 $\frac{\partial z}{\partial y} = \phi_{1}^{1} (y + ax) \times 1 + \phi_{2}^{1} (y - ax) = 0$

Using the given conditions, we have

 $a \left[\phi_{1}^{1} (y + ax) \times \phi_{2}^{1} (y - ax) \right] = a \sin y - 4$
 $\phi_{1}^{1} (y + ax) \times \phi_{2}^{1} (y - ax) = 0 - 0$

Solving the above face equations.

Adding $(x, y) = \sin y$.

 $\phi_{1}^{1} (y + ax) = \frac{1}{a} \sin y$.

Substracting $(x, y) = \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

The above condition becomes $x \approx 0$,

 $(x, y) = \frac{1}{a} \sin y$.

Then on integration the above equations of $(x, y) = \frac{1}{a} \sin y$.

 $(x, y) = \frac{1}{a} \sin y$.

q (8) = - 1 (054

1.(4) = 3 sny 1, (g) = 5 (sg muse gives p. 14+ix) = = (0.8(4+ax) Φz (y-ax) = = cos (y-ax) Thence from the a. Z= -1 (05 (y+ax) + 1 (05 (g-ax)) z= = (cos(y-ax)- 是 (os(y+ax)) particular Integral (PI) we are considering the P.D.E $(a_0 D^n + a_1 D^{n-1} D^1 + a_2 D^{n-2} D^{\frac{1}{2}} - \dots - a_n D^{\frac{1}{2}}) z = g(x,y)$ ii, (F(D, D')) = g(x,y). In O.D.E, the same time we have the form f(D)y = g(x). $P \cdot \Gamma$ $Z = \frac{1}{F(o, o')} g(x, y)$ Here F(0,01) can be treated just like the operator F(D) in case of the o.p. = with constant coefficients. Theoram The general method for finding the P.I. If g(x,y) is a function of textey, then ie, $\frac{1}{D-mD'}$ $g(x,y) = \int g(x, (-mx)dx$.

Then after performing the integration we are

Now. as in ope depending upon the form of g(x,y) shorter methods are available the the particular integral which are discussed as case 1

When g(x,y) is of the form $g(x,y) = e^{ax+by}$.

 $\frac{P \cdot \Gamma = \frac{1}{F(P,0)}}{ax + by} \quad [D = a, D' = b]$

= $\frac{1}{F(a_1b)}$ eax $f(a_1b)$ $\neq 0$

Jf f(a,b) = 0, then f(0,0') must have a factor of the type (bD-a0'). In this case the p-1 is obtained by using the particular formula ite R-1

 $p \cdot 1 = \frac{1}{(b - a D')^7} e^{ax + by}$

 $p \cdot f = \frac{x^{\gamma}}{b^{\gamma} \gamma!} e^{ax + by.}$

Hote:

If in the case of f(a,b)=0 be it cannot be converted to the form $(bo-ao')^7$

Then the P. I can be obtained by partially differentiating the donominator with D or D' and simultaneously multiplying to numerator by and

where $f'(a,b) = \left[\frac{\partial}{\partial D} f(0,0')\right] \neq 0$. 100, when g(x,y) is of the form g(x,y) = (as (ax+by) 00 5in (ax+by) $P:I = \frac{1}{F(0,0p,0^{2})} \cos(\alpha x + by) \cdot r \sin(\alpha x + by)$ g(x)= Cosax ur snax. $D^2 = -a^2$ PI = Tosox orshan DD' = - ab. $D^{12} = -b^2$. If F(-a)=0 $p-I = \frac{1}{f(-a^2, -ab, -b^2)}$ (as farthy) or sin(axthy) $f(-a^2, -ab, -b^2) \neq 0$ If $F(-a^2-ab, -b^2) = 0$ P.I = \(\frac{1}{(b0-a0')^7}\) (06(axtby) or sin (axtby). = ocr eastby or sin (arthy).

Note: If f(0°, DO', D'2) cannot be transformed to the form (bD-aD'), then we can proceed as the above case I.

```
① solve the following DE = 60^{2}D! + 1100!^{2} - 60')^{3}z = e^{5x469}
ans: The problem is algeady given in the s.f.
    A.E is, Found by putting
       D=M & D = 1.
   is, The A.E.
   F(m) = m3-6m2+11m-6=0.
      f(1) = 1 - 6 + 11 - 6
                                        1-6+11-6
       m=1 is a koof.
       (m-1) is a factor
    Then by synthetic division,
```

 $m^2 - 5m + 6 = 0$

$$M = 67 \int_{0.2}^{2} \frac{57}{25 - 24} = \frac{511}{2} \text{ or } \frac{5-1}{2}$$
 $M = 2$
 $M = 3$

$$CF = \phi_1(y+m_1x) + \phi_2(y+m_2x) + \phi_3(y+m_2)$$

$$CF = \phi_1(y+oc) + \phi_2(y+2x) + \phi_3(y+3x)$$

$$P.S = \frac{1}{F(D,D)} = \frac{1}{6x + by}.$$

$$= \frac{1}{D^3 - 6D^2 + 11 DD^{12} - 6D^{13}} = \frac{5x + 6y}{D^3 - 6D^2 + 11 DD^{12} - 6D^{13}}$$

$$= \frac{1}{5^3 - 6T5 (6+1) T5 T5 T6 - 6T6 - 6T$$

$$C \cdot F = \phi_{1}(y + \partial x) + \phi_{2}(y + x) + x + \phi_{3}(y + x).$$

$$P \cdot J = \frac{1}{F(D, D')} = ax + by.$$

$$= \frac{1}{(D - \partial D')(D - D')^{2}} = e^{x + y}$$

$$= \frac{1}{(D - \partial D')(D - D')^{2}} = \frac{1}{(D - \partial D)(D - D')^{2}} = \frac{1}{(D - \partial D)(D - D)^{2}} = \frac{1}{(D - \partial D$$

Ptere converting F(D,D') into the form (bD-aD') is not simple. So we are going to the method of differentiation.

P.I =
$$x \cdot \frac{1}{(1-a)^2} = \frac{1}{2x^2} = \frac{1}{2x} = \frac{1$$

$$2\left[(-20)^{3}+(-20)^{3}\right]+2(0-0)^{3}=449$$

$$=\frac{\pi^{2}}{2}$$

$$=\frac{\pi^{2$$

Shorter Method for Anding P-I when geocial) is of the form $g(x,y) = \phi(axx + by)$ of (ax+by) i'e when gining is of the toom & canethy) ii, $p \cdot T = \frac{1}{\mp (D_1 D_1)} \Phi (ax + by)$. $=\int ... \iint \frac{1}{F(a,b)} \phi(v) dv \qquad v=ax+by$ $=\frac{1}{F(a,b)}\int \iint \phi(v) dv^n$ where is is the degree of the thomogeneous hunchon f (B, D'). & after performing the in tegration, ie $\phi(v)$ ntimes vis explaced by anthy $\exists e$, v = asctby

the above formula faily - In such cases of F(D,D!) must be factorised into factorised the formula to factorised into factorised the for (bo-adi). ie one P.I becomes

P·
$$\Gamma = \frac{1}{f(p,p')} \phi(a\alpha + by)$$

$$= \frac{1}{(bp-ap')^n} \phi(a\alpha + by)$$

$$= \frac{x^n}{n! b^n} \phi(a\alpha + by)$$

1) Solve, (D2+ 8DD'+2D'2) 2 = 2x+34.

and The problem is alteady in 5.1=.

$$A - E$$
, $D^2 = D^{12}$
 $D = m$, $D^1 = m 1$.

$$m = -3 \pm \sqrt{9-4x1x2}$$

$$= -3 \pm 1$$

$$= -2 \cdot 2 \cdot 3 - 1$$

$$= -1 \cdot 2 \cdot -2$$

```
Here, P.I = 1 (ax+by) (covered tox thy)
 = \frac{1}{D^2 + 3DD^1 + 20^2} + (2 \alpha + 3y) = \frac{1}{F(ab)} \int V dV dV
V = 2x + 3y.
         (b=a= 2, D'=b=3]
     = \frac{1}{2^2 + 3 \times 2 \times 3 + 2 \times 3^2} \int \int V \, dv \, dv.
     = \frac{1}{40} \int \frac{\sqrt{2}}{2} dy. 
                                 V 5 2 6 V
       = 1 Sv2dV
       = \frac{1}{80} \times \frac{\sqrt{3}}{3} = \frac{1}{240} \times (2x + 3y)^{3}
  in the complete solution
         2 = $\phi_1(g-x) + \phi_2(y-2x) + \frac{1}{240} (2x + 3y)^3
Solve

8F \Rightarrow 7 \Rightarrow 7 + 5 - 2t = \sqrt{2x+y} \sqrt{\frac{12 \cos 8e-3}{3\cos 4y}}

\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 2 \frac{\partial^2 z}{\partial y^2} = (2x+y)^{1/2}

\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} = 2 \frac{\partial^2 z}{\partial y^2} = (2x+y)^{1/2}
AE D2 + DD' - 2 D' = 6 x+y) 1/2
     Dem, pet not = 5 (5) 0 1. 1998 1 1 1 188
   m2+m-2 -0
              m= -1 ± J-1-4.4.1x-2 = -1±3
```

is cfie, z= p, (g+x) + \$\phi_2(g-2x)\ \frac{1}{f(p_1p_1)} \phi(axthy) $P: I = \frac{1}{F(D_1D^1)} \quad \phi \quad (aoctby).$ $= \frac{1}{D^2 + DD^1 - 2D^{12}} \quad (2x + y)^{1/2} \quad \phi \quad (y) = (2x + y)$ $p = a = a, \quad o' = b = 1$ $V = a \times a$ 32+2x1-2x12 (2xxy) 1/2 5 (v) 2x dv $= \frac{1}{4} \int \frac{y_2+1}{y_2+1} dy$ $= \frac{1}{4} \int \frac{\sqrt{3}|2}{3/2} dy$ $= \frac{1}{6} \frac{\sqrt{5}|2}{5/2}$ $= \frac{2}{12} \int \sqrt{8}|2| dy = \frac{1}{6} \frac{\sqrt{5}|2|}{5/2}$ $= \frac{2}{800} \sqrt{5}|2|$ $= \frac{2}{800} \sqrt{5}|2|$ $=\frac{2}{30}\left(2x+y\right)$ $\frac{1}{15} \left(2x + y \right)^{5/2}$ with (.s), z = (.F + PI)2 2 \$, (y+x)+\$2(y-2x)+ (2x+8) 5/2 (3) solve (02-2001+012) z = tan (4+x) AE, pom, pol m2-2m+1=0 m= =d+[4-4" = 12 do 1

$$P^{1} = \frac{1}{1 \cdot (P, D^{1})} + x \cdot \Phi_{2}(y+x)$$

$$= \frac{1}{1 \cdot (P, D^{1})} + \frac{1}{1 \cdot (P, D^{$$

date Module 1 Partial Differential Equation Continues) Method of Finding p. I when g(x,y) - x y n As discoused in the oridanas D.E, takoust the lowest degree learn from 1 (0,0') so as to reduce it in the form [1 ± F(0,0)] After that, take it to the numerators & get [1 + F(D,O)] " which is then expanded with the help of binomial theorem. of $g(x,y) = \alpha^m y^n$, then $[1 \pm F(0,0')]^{-n}$ is expanded in powers of o' if min & expanded in powers of Di if men. 1) Solve (D2-200'-15 012)z = 12 xy A.E = D=m , D=1 (m=-3,5) m2 - 2m - 15 =0. m= a ± s(-2)2-4x1x-18 = 2 ± 54 + 60 = $\frac{2\pm8}{2}$ $=\frac{2+8}{2}$ & $\frac{2-8}{3}$: m = 5 & -3

('F = p.(y +-3x) + p2 (y+5x)

//

$$= \frac{12 \left[\frac{23}{6} y + \frac{24}{34} \right]}{6}$$

$$= \frac{12 \times 3y + \frac{24}{12} \times 12}{6}$$

$$= 2 \times 3y + 24$$

2/4/16 Find the real function , v of x & 4, reducing to zero when y=0, and satisfying. $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial u^2} = -4\pi \left(\alpha^2 + y^2 \right).$

and there the real function V satisfying - the given equation can be obtained by Anding the P. E of the given eq. equation.

The symbolic of the given equation is (D2+D12) y=-4 # (x2+y2) $P \cdot \Gamma = \frac{1}{F(D, D')} g(x, y) = x^{m_y} n$ $= \frac{1}{0^2 + 0^2} - 4\pi \left(x^2 + y^2 \right).$ [1± F(D,D] $= -4\pi \frac{1}{D^{2} \left(1 + \frac{D^{12}}{D^{2}}\right)} (x^{2} + y^{2})$ ((+x)=1-x+x2x3 $= -\frac{4\pi}{b^2} \times \left[1 + \frac{D^2}{b^2}\right]^{-1} \times \left(x^2 + y^2\right)$ $= -\frac{4\pi}{h^2} \left[1 - \frac{D^{12}}{\Omega^2} \right] (x^2 + y^2)$

$$= \frac{-4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - \frac{D^{12}}{D^{2}} \left(x^{2} + y^{2} \right) \right]$$

$$= \frac{-4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - \frac{1}{D^{2}} \frac{x^{2}}{D^{2}} \right]$$

$$= \frac{-4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - \frac{1}{D^{2}} \frac{1}{D^{2}} \left(x^{2} + y^{2} \right) - \frac{21}{D^{2}} x \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -\frac{4\pi}{D^{2}} \left[\left(x^{2} + y^{2} \right) - 2 \frac{x^{2}}{2} \right]$$

$$= -4\pi \left[\frac{1}{D} y^{2} \right$$

with hedrey to zero when y=0,

 $V = -2 + x \times x^2 \times 0 = 0$

```
rivading the method of Finding P.J
  when g(x,y) is of the form eax+by. V(x,y)
  g(x)(y) = e^{ax+by} V(x,y).

P \cdot 1 = \frac{1}{F(D,D)} e^{ax+by} V(x,y).

V(x,y).

V(x,y).

V(x,y).

V(x,y).

V(x,y).

V(x,y).
P. I = extby. 1
                 F(D+a, 0+b) V(x,y)
solve (02+00'-60'2) = y sin x.
    SF > D2f DD' - 60'2-
                                             m=2, -3
     0=m, 0'=1
  :AE = m2+ m-6 =0
      m = -1 \pm \sqrt{1^2 - 4 \times 1 \times -6}
          = -1 ± 524 + 24 = -1 + 5 & -5
                          =\frac{4}{3} & -\frac{6}{2} = 2 & -3
(·f, 2= p, (y+2)c)+ $\phi$ \phi_2 (y-3x)
 p-I = \frac{1}{F(D,D')} g(x,y).
```

eix : cosxtisonal $P \cdot I = \frac{1}{f(p, p')} g(x, y)$ = I. p. of e xy $P \cdot I = \frac{1}{p^2 + 0p^4 - 6p^2} I \cdot P \cdot of e^{ix} \times y$ = I Pofe $(D+i)^{2}+(D+i)(D+0)-6(D+0)^{2}$ $(D+i)^{2}+(D+i)(D+0)-6(D+0)$ $(D+i)^{2}+(D+$ $= Ip^{6}e^{ix} \frac{1}{b^{2}+20i-1+00'+i0'-60'^{2}}$ = I.pofe ix 1 (D2-4+DD-6D'2)+(2iD+iD')-1 x y - y'x = I.P of eix 1 D2+OD-60'7 1 (2D+D')-1 moltistyrings by owning win forsing (1± F(BD)) = -I.P ofeia 1 1 = [i(20+0')+02+00'-60'2] =- 1. Pofeix [1-(i(20+D')+D2+DD'-6012)]

```
=- [ p of eix[1+i(20+0)+0+00-60'2]g (-x)=14x+x4.
- - I.P of e (9+1 (2019)+0'(4))
                                   e'x cosxtisinx
 = -19 of e'x [y+i(1)]
= - I.P of ((os.x + isinx) (y+i)).
= -I.P of [y cosx + i cosx + isinxxy + i2 sin 21]
  Excess + yorx - sex
= - ( y sin x + cosx.)
Solve (02 € 00'-20'2) z = (y-1) e.x.
         D=m, D'=1.
       m^2 + m - 2 = 0
         m= f1 ± J12-4x1x-2
            = +1 ± JI+8
           = +1+3 &+1-3 = $ 6-2=
 (.f " z= p, (y-x) + $2(y+2x).
  P. I = 1 F(D, D') e ax + by. V(x, y).
      = \frac{1}{D^{2} + DD^{1} - 2D^{12}} (y-1) e^{x}
    = e x+0y (D+1)2+(D+1) (D+0)-2(D+0)2(y-1).
```

$$= e^{x} \frac{1}{p^{2}+2D+1^{2}+ DD^{1}+0+D^{2}+0+D-2D^{12}} \qquad (y-1)$$

$$= e^{x} \frac{1}{D^{2}+1+2D-DD^{1}-D^{1}-2D^{1}-2D^{12}} \qquad (y-1)$$

$$= e^{x} \frac{1}{(1+(2D-D^{1}-DD^{1}+D^{2}-2D^{12})]} \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}-2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1-\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{2}+2D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{1}+D^{12}-D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{1}-D^{1}-D^{12}-D^{12})}\right] \qquad (y-1)$$

$$= e^{x} \left[1+\frac{1}{(2D-D^{1}-DD^{1}+D^{1}-D^{1}-D^{12$$

(a) folice
$$(D^2D' - 2DD' + D'^2)Z = \frac{1}{x^3}$$

in $D \cdot 1$.

 $m^3 - 2m^2 + m = 0$
 $m (m^2 - 2m + 1) \cdot 0$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 - 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4 + 4x \cdot x}$
 $m = 2 + \sqrt{4$

1 1 1 7/97

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c-3c}{x^{3}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c}{x^{3}} - \frac{1}{x^{2}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c}{x^{3}} - \frac{1}{x^{2}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \int \left(\frac{c}{x^{3}} - \frac{1}{x^{2}}\right) dx.$$

$$= \frac{1}{(D-D^{1})} \left(\frac{c}{x^{3}} + \frac{1}{2c}\right)$$

$$= \frac{1}{(D-D^{1})} \left(\frac{c}{ax^{2}} + \frac{1}{2c}\right)$$

$$= \frac{1}{($$

(5) Solve
$$\frac{3^{2}z}{3x^{2}} - \frac{3^{2}z}{3x^{2}y} - 2\frac{3^{2}z}{3y^{2}} = (2x^{2} + xy - y^{2})\sin xy$$

$$= (06xy)$$
And $\theta + \varphi \Rightarrow (D^{2} - DD^{1} - 2D^{12})z = 0$
And $\theta + \varphi \Rightarrow (D^{2} - DD^{1} - 2D^{12})z = 0$

And $\theta + \varphi \Rightarrow (D^{2} - DD^{1} - 2D^{12})z = 0$

$$= (m = -1, 2)$$

$$=$$

= 1 D-ap' [(x+c). sin(cx+x2) - cos(x+x2)]

$$= \frac{1}{D-2D^{1}} \int \left[(2-c) \left(-\frac{d}{dx}, \cos(cx+x^{2}) \right) dx \right]$$

$$= \frac{1}{D-2D^{1}} \left[(2-c) \left(-(\cos(cx+x^{2})) \right] + \left[\cos(cx+x^{2}) dx \right] \right]$$

$$= \frac{1}{D-2D^{1}} \left[(c-x) \left(\cos(cx+x^{2}) \right) \right] + \left[\cos(cx+x^{2}) dx \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right]$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c-x) \left(\cos(cx+x^{2}) \right) + \left(\cos(cx+x^{2}) \left(\cos(cx+x^{2}) \right) \right)$$

$$= \frac{1}{D-2D^{1}} \left((c$$

ne Dimension

ition.

A partial Differential Equation is an equation hat contains one or more partial derivative of an unknown function that depends on alleast two variable. P.D.Eis, are very important in Fluid dynamics, elasticity electromagnetic theory & Quantum mechanics. In this chapter we nealize am important P.D.E axising in playsics Wave equ. of the vibrating elastic string.

In this chapter we are discussing about the method for obtaining solutions to P.D.EUS Subjects to the given conditions.

The method of Separation of Variables.

Here we will discuss the most commonly used muthod ie, the method of separention of variables for obtaining the solution to the p-p-E(s) subjects to the given condition.

Suppose that given PDE, contains in independent variable x, x, xn and or dependent variable 'u'. In the method of separation of variables, we assume that in can be expressed as it

where x_i is a function of x_i enlywhere x_i is a function. Substituting the x_i in the given x_i and if we get in ordinary x_i which are then solved for x_i . This the pre can be solved using the method of separation of variables.

(1) Solve $x \cdot \frac{\partial u}{\partial y^{x}} = 2y \frac{\partial u}{\partial y} = 0$, by using the method of separation of variables:

Ans: $x \frac{\partial u}{\partial x} - 2y \frac{\partial u}{\partial y} = 0$ Let $u(x,y) = X(x) Y_{(y)} = 0$ $\frac{\partial u}{\partial x} = X'(x) Y_{(y)} = X'Y$ ie, $\frac{\partial u}{\partial y} = X_{(x)} Y_{(y)} = XY'$ Substituting this $\frac{\partial u}{\partial x}$ and $\frac{\partial u}{\partial y}$ in O

 $\frac{x}{x} = \frac{2yxy' = 0}{\sqrt{y'}}$ LHS is a function of x only

Here 1.11.5 is a function of it only and p. H.s is a function of y only. Since x by an endupendant variable. The above eqn Des (rue if each side = 13 equal to same constant (which is called the paration constant).

$$\frac{x x'}{x} = k.$$

$$\frac{x x'}{x} = k.$$

$$\frac{x}{dx} = k. \qquad x' = \frac{dx}{dx}$$

$$\frac{dx}{x} = k \frac{dx}{x}.$$

$$-) \log x = k \log x + \log c,$$

$$X = c_i x^{k}$$

$$\frac{2yy'}{y} = k$$

$$y' = \frac{d}{d}$$

$$\Rightarrow \frac{2y \ dY}{Y^{*}} = k.$$

$$\frac{dY}{Y} = \frac{k}{2} \frac{dy}{y}$$

$$\log \dot{y} = \frac{k}{1} \log y + \log c_2$$

$$\dot{y} = c_2 e^{k/2}$$

Hence the General solution is
$$U = XY$$

$$= U = C_1 \propto K - C_2 Y = C \propto K Y^{K/2} \left[c_1 \times C_2 = C \right]$$

111 till (a) solve $\frac{\partial^2 u}{\partial x^2} - a \frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$

ans:- The given p.D.E contain or by. as independent variables & w' as a dependent variable.

The given problem has a solution of the form X(x), &Y(x) form x where x is a frethon of x only Y is a function of y only, u(x,y)= X(x) Y(y)

Then differenting the pointfally

Without we get $\frac{3u}{3x^2} = x^{11}y$

 $\frac{\partial \lambda}{\partial n} = \chi \lambda_1$

where 's denotes the derivative a so to the relevant variable. Substituting these derivatives in the given equ. we get

X"Y - 2X'Y + XY' = 0

on separating variables [After dividing the above ean throughout by XY]

$$\frac{x'' - 2x' + \frac{y'}{y}}{x} = 0,$$

$$\frac{x'' - 2x' - -\frac{y'}{y}}{x} = 0$$

· since &, y are independent variables. the above egn is true, if and only if each side is equal to the same constant sight kaconstant. $\frac{x''-2x'}{x}=\frac{-y'}{v}=k$ which gives $\frac{x''-2x'}{x}=k$ \Rightarrow $\times'' - 2 \times' - k \times$ X'' - 2X' - KX = 0 - GThis is an a.o. E $X = 2 \pm \sqrt{4 - 4 \times 1 \times - k} = 2 \pm \sqrt{34} + 4 \times 2$ $2 \times \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ $= 2 \pm \sqrt{4 + 4 \times 1 \times - k} = 2 \pm \sqrt{4 + 4 \times 1 \times - k}$ 8F 15, (D2-20-K) X =0 A.E is $\lambda^2 - 2\lambda - k = 0$. $\lambda = 1 \pm \sqrt{1+k}$ X = I+ JHK, I-JI+K Thus the solution & is CF=CIENIX+Czetex. Again from 3 => -Y = k, re - y' = k y => - dx -47 K -> dy =-kdy => logy = -ky + alogo

:. The solution of Equation (1)
ie, the general solution, ie $U(x,y) = \left(c_1e^{\left(\frac{1+J+k}{2}\right)x} + c_2e^{\left(\frac{1-J+k}{2}\right)x}\right) \cdot \left(\frac{e^{-ky}}{3}e^{-ky}\right)$ $U(x,y) = \left(A \cdot \left(\frac{1+J+k}{2}\right)x + B \cdot \left(\frac{1-J+k}{2}\right)x - ky\right)$ where $c_1 \cdot c_2 \cdot c_3 = B$.

A, &B are the arbitary constants.

(3) Use the method of separation of variables $\frac{333612}{332}$ $c^2\frac{3^2y}{3x^2} = \frac{3y}{3t}$ which tends to zero as $t \to \infty$ as $t \to \infty$ the eqn is called the 4dimension head-eqn

ans: The given PDE is $\frac{c^2}{\partial x^2} = \frac{\partial u}{\partial t}$

using the method of separation of variable the givien eqn has the solution of the Him U (or, t) = X(1) T(t) = XT - 2 dependent = u to By diff. He a w. r. to the independent variable of the we get $\frac{\partial u}{\partial t} = XT'$

 $\frac{\partial t}{\partial x^2} = X''T$

where the 100 ocprensents derivative

substituting the above values in a we get c2 x" T = XT' - 3 Now arguing exactly as in the previous protein we have. privileg c2x"T=XT'=xk. Then Now we are reparelling the variable after dividing XT. $\frac{C^2 \times II}{\times} = \frac{1}{X} = \frac{1}{X} = \frac{1}{X}$ The above eqn @ gives $\frac{(2\times11)^2}{X} = k.$ (2X"= XK ナ=ヒナ (2×11-康KX=0 T'-KT=0 $x'' - \frac{k}{C^2} x = 0$ Now Bu, obtaining the solution satisfying the given boundary condition the contant ik'may have the following 3 possibility If K=0 in case I Si- = D2 X = 0 AE-) X 2 = 0 (C /= 0,0 (.s, X = (C,+C2x) ex = C,+C2x on C,x+C2 St 7 =0

$$X'' - \frac{p^2}{C^2} = 0$$

$$SF\left(D^2 - \frac{p^2}{c^2}\right)_{x} = 0$$

$$AE = \lambda^{2} - \frac{p^{2}}{c^{2}} = 0$$

$$\lambda^{2} = \frac{p^{2}}{c^{2}}$$

$$\lambda^{2} = \frac{p^{2}}{c^{2}} \Rightarrow \lambda^{2} = \frac{p^{2}}{c} + \frac{p^{2}}{c} = 0$$

$$(P/c)x \qquad (P/c)x \qquad$$

$$X = c_4 e^{(P/c)x} + c_5 e^{-P/c}x.$$

$$\chi'' + \frac{p^2}{C^2} \chi = 0$$

$$\lambda^2 = -p^2$$

$$(p - P^2) T = 0$$

$$\lambda^{4} + P^{2} = 0$$

$$\lambda = -P^2$$

Hence from the equ @ The solution corresponding to the above 3 possibilities are given by un \$7,800

In these three solutions we have to consider that solution which satisfy the boundary condition $u \to 0$ when $t \to \infty$ for all z. Tleasly the solution \vdots given by eqn G corresponding to $k = -p^2$ is the sequiled solution.

Solve the boundary value problem $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial y^2} = 0 \quad \text{satisfying the condition}$ $z(z,0) = 0 \quad z(x,\pi) = 0, z$ z(0,y) = 48n3y

ans: or &y > independ variables

2 > dependent variables.

Z(x,y) = X(x) Y(y) = XY - 0

anve $\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial y^2} = 0$

using the method of separation of variable the general solution of eqn @ has the form is given by @

Here X is a function of 'x only de Y is a function of 'y' only, substituting the partial derivatives with x by of @ in @ we get

Then by districting the above egn throughod by XX. & separating variables we get

 $\frac{x''}{x} + \frac{y'''}{y} = 0 \implies \frac{x'}{x} = -\frac{y''}{y} = k.$

The given form of boundary conditions show that Yey, must be of trignometric form. To satisfy this requirement the separation constant it in 3 is taken as profine years.

Thon

X

the eqn (9) give; XITKX -Y1 = KY Y"+KY=0;-6) , " Y"+ p2 Y=0. AF > X-P2 =0. AE => 12+P2=0. $X^2 = -P^2$ ·. >= p2 $\lambda = \pm \int -p^2$. $x = c_1 e^{p^2 x} - 6$ (x:0) $\lambda = \pm i p$. Y= C2 caspy+Gsinp. From @ the solution of the given p.D-12 is given by z (oc, y) = c, e (c, cospy + c, sinpy) Using the first boundary condition Z(x,0)=0, we get. Z(X,0) = . C, e P2x [C2 x1+0] $\Rightarrow c_1 e^{p^2 x}, c_2 = 0.$ ie, c, e p2x + 0

* Z(x,) = 0, we get $Z(X,T) = C_1 e^{p^2 x} \left[c_2 \cos p T + C_3 \sin p T \right]$ From condition a, $C_2 = 0$. is, z(x, T) = c, eptx [ox (0s pT+ C38inpT] Z (XIT) = C, & 2x . C3 Sin pT. => C1 e c C3 Sin pTT =0 18 - SIM PIT = 0, & C3 70. -i p = 0From egn & substitute, C2 = 0 & p=n z(x,y) = Ge Re [Ox cos ny + c3 Sin ny] $Z(x,y) = c_1 e^{n^2 n} \times c_3 \sin ny$ $z(x,y) = C_1 c_3 e^{n^2x} \sin ny$ Using the painciple of superposition The ean @ can be taken where (An = C, C3)

conditions
$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{where}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad \text{we get}$$

$$z(0, y) = 4 \sin \theta y. \qquad$$

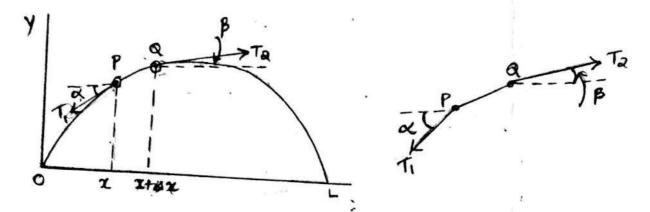
where
$$A_n = \begin{cases} 4, & n=3 \\ 0, & n\neq 3 \end{cases}$$

Wave Equation.

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$$

where
$$C = \sqrt{\frac{T}{M}}$$

The wave equation is
$$\frac{\partial^2 u}{\partial t^2} = \frac{1}{c^2} \cdot \frac{\partial^2 u}{\partial x^2}$$
.



Consider a tightly stretched elastic string of length I with its end points fixed. Let the string be released from rest and allowed to vibrate. The problem is to find the deflection y(x,t) at any point x and at any time t>0. For deriving the partial differential equation we make the following assumptions.

- 1. The mass of the string per unit length is constant.
- a. The string is perfectly elastic and does not offer any resistant to bending.
- 3. The lension caused by stretching the string before lixing it at the end points is so large compared , to the weight of the string and hence the action of the gravitational price can be neglected.
- 4. The string performs a small bransverse vibration in a vertical plane. In other words, every particle of the string moves strictly vertically so that the deflection and the slope at any every point of the string remains small in absolute value.

The re-arcis along the string as erigin and the re-arcis along the string we assume that the motion takes place entirely in the xy plane. Consorthe takes acting on a small postion to of the string where Plany) and a (x+1x, y+2y).

since the string does not offer resistence to bending the tension at each point of the string is tangential to the curve of the string. Let T, and To be the tensions at the points P and Q. Let & and B be the angles made by tangents at P and Q respectively with the X-axis. Since the points of the string move vertically, there is no motion in the harizontal direction. Hence the horizontal components of the tension must be constant.

.. T, cos & = Tocosp = T constant.

Let m be the mass per unit length of the string. The vertical component of the force acting on the elemant PQ is

Tasin B- Tisind.

Acceleration of the element in the y-direction is

Then by Newtons scional law of motion.

Tasing-Tisina = max 2y . ____(1)

Dividing (1) by
$$T, \cos \alpha = T_{\alpha} \cos \beta = T$$
, we get

$$\frac{T_{\alpha} \sin \beta}{T_{\alpha} \cos \beta} - \frac{T_{\alpha} \sin \alpha}{T_{\alpha} \cos \alpha} - \frac{T_{\alpha} \sin \alpha}{T_{\alpha} \cos \alpha} - \frac{T_{\alpha} \cos \alpha}{T_{\alpha}$$

Let tan & and tang one the stopes of the strings at

$$\frac{1}{2\pi} \frac{1}{2\pi} = \frac{1}{2\pi} \frac{1}{2\pi$$

Taking limits as $\Delta \mathcal{K} \rightarrow 0$ we get $\frac{\partial^2 y}{\partial t^2} = \frac{T}{m} \frac{\partial^2 y}{\partial x^2}$ $\frac{\partial^2 y}{\partial t^2} = \alpha^2 \frac{\partial^2 y}{\partial x^2}, \text{ where } \alpha^2 = \frac{T}{m}$ $= \alpha \frac{\partial^2 y}{\partial x^2} + \alpha \frac{\partial^2 y}{\partial x^2} = \alpha \frac{\partial^2 y}{\partial x^2}$

This partial differential equation is known as the one dimensional wave quation.

In this equation, we have

$$C = \sqrt{\frac{T}{m}}$$

Here, c has the dimensions of length/time and hence the same dimensions as a velocity. In order to clitumine the subsequent behaviour of the string, the displacement u(x,1) must satisfy certain boundary conclitions.

Euroday conclitions (BC):

In addition, since the partial derivative use that appears in the wave equation is of the second cade, we must specify two initial conditions (Ic) which are the initial position (or initial displacement) and the initial velocity of the string. These conditions are written as

$$Tc: \begin{cases} u(x,0) = f(x) \\ \frac{\partial u(x,0)}{\partial x} = c \left(u_{1}(x,0) \cdot g(x)\right) & (0 \le x \le a) - (5) \end{cases}$$

where fox) and g(x) suppresant the given initial position and velocity suspectively. The problem is to that the solution of the partial differential Equations that also satisfies the conditions (1) & (5). Such a problem is called an initial-boundary value problem.

of the one dimensional wave on using the method of separation able

ime that the solution of wave equ

$$\frac{2u}{3\times2} = \frac{\lambda}{c^2} \frac{\partial^2 u}{\partial + 2} - 1$$
 is

in the separated form as

$$) = \chi_{(x)}. T_{(t)} - \emptyset$$

and separating variables by the the separation constant 'k'

If the above egn throughout by XT. separating the variables

$$\frac{1}{T} = C^2 \frac{T^{11}}{T} = 12$$

here weget zwo ordinary eqn

$$\frac{1}{1} = k$$

of we can solve these two o.o.E. we can multiply their solutions logethu Obtaining the general solution.

equation, the form of the solution changes for KKO, K=0 & K>0

Now we can solve the eqn @&©

by using the above three possibilities.

$$x^{\parallel} = 0$$

$$T'' + \frac{p^2}{C^2} T = 0$$

x = c5 (05 ipx+ 68 ipx) T = c4 cos(b) + 68 infe) x. when to is positive (K>0). K= +102 $T'' - \frac{p^2}{12} T = 0$ $X^{1} = P^2 X = 0$ x2- p2 20 $\lambda^2 - p^2 = 0$ 12 = P2 x2=p2 X = ± P $X = \pm p$.

(if $X = c_{1}e^{px} + c_{1}e^{px}$ $T = c_{1}e^{px} + c_{1}e^{-(y_{c})}t$ $\lambda = \pm p$. the solutions of the given egn. U(x,t)= (C,x+C2) (3 ++C4) U(x,t) = (C5-C05px + C6Gin po) (C7C05(P)++C85/1/P)+ U(x,t) = (cgepx + c10e-px) (c11e+ c12 e-(16)t) Here the solutions are not saitisfying the condition when k = -p2. So we are taking $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$ Then by the method of geparation of valiable we get U(x,t) = X(x) T(t)

The above can
$$\int_{0}^{2} d \frac{1}{2} \frac{32u}{2t^{2}} = \frac{1}{2} \frac{32u}{2t^$$

then by the medhed of separation of varieties & by dividing each side by XT and arrange

$$\frac{x^{\prime\prime}}{x} : \frac{1}{c^{\prime\prime}} \cdot \frac{1}{T} \cdot k \quad ... \quad (ii)$$

From (ii)

$$\frac{x''}{X} = k$$

$$\frac{1}{C^2} \frac{T^{11}}{T} = k$$

$$\frac{T''}{T} = kC^2$$

then we can solve tou eque (fv) & (iii) by using 3 poestbilities KLO, K=0, K>0.

T"+ CPT =0

x2+c2p220

$$x'' + p^2 X = 0$$

$$\lambda^2 + p^2 = 0$$

$$\lambda^2 = -p^2$$

$$\lambda^{2} = -p^{2}$$

$$\lambda^{2} = \int_{-p^{2}}^{-p^{2}}$$

$$\lambda = \pm ip$$

$$\lambda = \pm icp$$

$$X = C_1 \cos px + C_2 \sin pt.$$

$$X = C_1 \cos px + C_2 \sin pt.$$

$$X = C_2 \cos px + C_3 \sin pt.$$

$$X = C_3 \cos px + C_4 \sin pt.$$

$$X = C_4 \cos px + C_5 \cos px + C_5 \cos px.$$

$$X = C_5 \cos px + C_6 \cos px.$$

$$X = C_4 \cos px + C_5 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px + C_4 \cos px.$$

$$X = C_4 \cos px.$$

$$X =$$

to choose that tolution which is consistant with the physical nature of the physical nature of the problem.

As we are discussing the problem of vibration the displacement was, t) must contain the peopled functions of the tenu, the (1,1,1) must contain me though the (1,1,1) must contain me trying the solution of the equ is the first solution. it.

U(x,t)=(e, cospoc+cz sinpx) (c3(oscpt+C4sincpt)

The solution of the wave eqn.

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \times \frac{\partial^2 u}{\partial t^2}$$

u(x,t) = (, cospx + C2 sinpx) (c3 cos cpt +C4 sin cpt)

with an intial alisplacement, u(si, o) = F(x), when the displacement u(x, t) of the string is discribed by the one dimensional wave equation $\frac{1}{2}u = \frac{1}{c^2}$, $\frac{1}{2}u = \frac{1}{c^2}$. The boundary condition of fixed and may be written as

* u(L,t) = 0 --- 3

the sect the initial velocity is zero.

The initial u(x, 0) = 0 — A.

The initial displacement is F(x) then we have u(x, 0) = F(x).

The General solution of the equation (1) by
the method of separation of variables is

"U(x, t) = (c, (ospx + c2 Sinpx) (c3 cos cpt + c4 Sincpt).

Applying the first
the boundary condition U(0,t)=0ie equation (2) in eqn (3, we get. $0-c_1$ [c3 cos cpt + c4 Sincpt]

u (x,t)=(c2 sin px) [c3 cos cpt+qp sin cpt] ulxit Now we are applying the second 50, t boundary condition "e u(i,t)=07 poinc ie the eqn 3 substitute in eqn 9 UI 0 = Gsin pl [c3 cos cpt + C4 Sin (pt] & \$0 (brews (,812 as ashitary constan = SinpL=0. & c2 +0 "ula, t => Sin pL = sin n# ie, pt = nr Inos * ie $P = \frac{n\pi}{L}$ (eigen value) we 1+ (Here p is called an eigen value when 'p' is substituted in Sin pt' then the function 'sin nTX' is called an eigen Linction. Then Each eigen value corresponding to a VEN particular value of 'n' is a unique eigen function. It should be noted that fre eigen value for n'=0 is excluded here as a possible solution, Since, this corresponds to Pzo Now we are substituting the value P= nII in equit

a(x,t)= (c2 sin prx) [c3 coson rit + casin c prt] so, by the method of superposition poinciple we get a kastle u(or, +) = en [An cos cont + Bosin [1] x (sin no) when An= CzC3 & Bn = Ca C4. 1(a,t) = \[\langle \langle An Cos n\(\pi\) ct + Bn Sin \(\pi\) \\\ \frac{\pi\}{\pi}\) we differentiate eqn @ with respect tot 1 (u(x,t)) = E (An KNEN L tx nITC + Bn cos mict nite) 4 (Sin nita) = Enter Anx-SinnTctxxxx+Bncos nTctxxxx Ising the condition for in the above) *u(x,0)=0 $0 = \sum_{n=1}^{\infty} \frac{n\pi c}{L} \left[o + Bn \right] & sin \left[\frac{n\pi c}{L} \right]$ O = ST NTC Bn Sin NTC $Bn = 0, n\pi c \neq 0, Sn n\pi sc$

Finally the constant An is determined by the use of the boundary condition ie is the equation 3 which gives

u(x,0)= F(x) -3 F(X)= E ANSIN nTX

which separsents the half range foncier sine senies for F(x) where the coefficient An=

An $=\frac{2}{L}\int_{L}^{\infty}f(\alpha)g(n\pi\alpha)d\alpha$.

spring is given an initial displacement of the string is and an initial velocity g(x)?

The string is an initial displacement for and an initial velocity g(x)?

The string is or Ans the displacement u(x,t) the string is given by the 1 pimerational epo

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{C^2} \frac{\partial^2 u}{\partial t^2} - \boxed{3}$$

Since the end point of the string are fixed, we have the boundar condition as

u(0,t) =0
$$-6$$

u(L,t) = 0 -6
The initial displacement is $f(x)$
 $c(x,0) = f(x) - 4$
and the initial velocity is $g(x)$ ie,
 $\frac{\partial}{\partial t} u(x,0) = g(x) - 6$

using the method of separation of variable the solution of ean @ 1's u (or,+) = (c, cospx+czsinpx) (cz cosept+c45in(pt) By applying the boundary condition 2 in eqn 6, we get c120 By applying the boundary condition 3 in can 6, we get p= not, where n= 1,2,3.-) substituting truse & values in eqn(6) and using the principle of superposition we get a genuel solution as u(x,t) = \(\sum_{h=1}^{00} \left[An cos \frac{n\pi c}{L} + Bn \frac{\gamma n\pi c + t}{L} \] Sin nix

Now using the initial condition E4 In 4.

F(x)= \[\langle \lang

F(x) = E An Sin nirx

clearly this is a Halfrange Fourier sine series. where An, is

An = of for sinma da. - 8

Nowwe as Bn, now are are going to apply the initial conditions, In

eqn G $\frac{\partial}{\partial t} u(x, 0) = g(x) - G$

For that purpose first we are different the eqn & partially w. ++ to t.

0

 $\frac{\partial(u(x,t))}{\partial t} = \sum_{n=1}^{\infty} \frac{n\pi c}{L} \left(An \left(-\sin \frac{\pi c}{L} \right) + Bm(\cos \frac{\pi c}{L} t) \right)$ * Sin $\left(\frac{n\pi x}{L} \right)$

Now we are gipplying the 5 eqn 5 is fitte above eqn.

$$g(x) = \sum_{n=1}^{\infty} Bn r \frac{n\pi c}{L} r \sin \frac{n\pi x}{L}$$

clearly this is a Half bange founder sine somes. where Bn is,

$$B_n \cdot \frac{n\pi c}{L} = \frac{2}{L} \int g(x) \cdot \sin \frac{n\pi x}{L} dx$$

$$\frac{1}{n\pi c} \int_{0}^{\infty} g(x) \times \sin(\frac{n\pi x}{L}) dx$$

Hence the required solution is obtained as equal where An &Bn are equiren by eqn & & eqn ?.

A tightly stretched Homogeneous string of length 'L', with its ends fixed at x = 0, a x = L. Execute transverse x = 0, the atom starts with zero viboation. Motion starts with zero viboation velocity by displacing the initial velocity by displacing the shing into the form $F(x) = k(x^2 - x^3)$. Find the diffection u(x,t) at initial time 't'

Let \mathfrak{g} be the solution of \mathfrak{g} and \mathfrak{g} be solution of \mathfrak{g} the paraphan of \mathfrak{g} the \mathfrak{g} and \mathfrak{g} by \mathfrak{g} the \mathfrak{g} and \mathfrak{g} by \mathfrak{g} the \mathfrak{g} and \mathfrak{g} in \mathfrak{g} the \mathfrak{g} and \mathfrak{g} in \mathfrak{g} the \mathfrak{g} and \mathfrak{g} the \mathfrak{g} that \mathfrak{g} is \mathfrak{g} that

Form of $(\epsilon x - z x) \neq = (x) \neq$ Symmibs: $(x) \neq = (x) \neq = (x) \neq$ Symmibs: $(x) \neq = (x) \neq =$

The motion offers to with a zoon initial

(3) = (+'1) n (3) = (+'0) n

at will brooks all something with the state of the son's all the so

and: The dother is given ut x, t) of the universional sinds is given the one dimensional

u(x,t) = ((, cospx + c2 sinpx) ((3 cos cpt + (4 sincpt) Now we are applying the boundary conditions a &3 in eqn 6. we get 61 =0 & p = nT (n=1,2,3-) How we are applying the above to two conditions in earl @ and applying . The poinciple of Super position. we get, the general solution of egn @ as. u(x,t)= & (An cos ntt ct + Bn sin ntct) x sin ntx applying the eqn @ in eqn (1) First we are partially differentiating the equal with respect to t and applying the initial condition 4 Bo = 0. Hence. egn 7 becomes. u(st,t)= E An cos n#c+ sin n#x

eqn (8). We get applying the eqn (5)

$$K(x^{2}-x^{3}) = \sum_{n=1}^{\infty} A_{n} \times I \times S_{n} \frac{n\pi x}{L}$$

$$K(x^{2}-x^{3}) = \sum_{n=1}^{\infty} A_{n} G_{n} \frac{n\pi x}{L}$$

$$Clearly HVS is a Halfourge Patener An is
$$S_{n} = S_{n} \frac{1}{1} \frac{$$$$

$$\frac{dk}{L} \left(\frac{(1^2 L^3)}{n\eta_{i}} \right) \frac{dsn\eta}{ds} + \left(\frac{2-6L \cos n\pi}{n\eta_{i}} - \frac{2}{n\eta_{i}} \right) \frac{sin n\pi}{(n\eta_{i})^{3}} \right) + \left(\frac{2-6L \cos n\pi}{(n\eta_{i})^{3}} - \frac{2}{(n\eta_{i})^{3}} \right) + \left(\frac{6}{sin n\pi} \right) \frac{ds}{(n\eta_{i})^{3}} - \frac{2}{n\eta_{i}} \frac{ds}{n\eta_{i}} - \frac{2}{n\eta_{i}} \frac{ds}{n\eta_{i}} - \frac{2}{n\eta_{i}} \frac{ds}{n\eta_{i}} + 0 \right)$$

$$= \frac{2k}{L} \left[\frac{(1^2 L^3)}{n\pi} \left(\frac{-L}{n\pi} \right) \frac{(sn\pi)}{(sn\pi)^{3}} + 0 \right]$$

$$= \frac{2k}{L} \left[\frac{(1^2 L^3)}{n\pi} \left(\frac{L^2 L^3}{n\eta_{i}} \right) \frac{ds}{(sn\pi)^{3}} + 0 \right]$$

$$= \frac{2k}{n\pi} \left[\frac{(1^2 L^3)}{n\pi} \left(\frac{L^2 L^3}{n\eta_{i}} \right) \frac{ds}{(sn\pi)^{3}} \frac{(sn\pi)}{(sn\pi)^{3}} \right]$$

$$= \frac{2k}{n\pi} \left[\frac{(1^2 L^3)}{n\pi} \left(\frac{L^2 L^3}{n\eta_{i}} \right) \frac{ds}{(sn\pi)^{3}} \frac{(sn\pi)}{(sn\pi)^{3}} \right]$$
Here the require solution is given by 6 where An is given by eqn 6

The shown is released from cest.

And

The displacement u(xit) of the storing is given by the 1 dimensional

wave eqp
$$\frac{\partial^2 U}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 U}{\partial t^2} - 0$$

since the string is tightly stretched blow A and B with length a. . Then our boundary conditions are

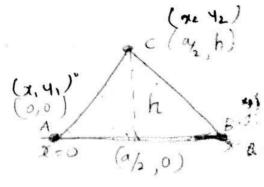
since initially the story is realrased from rest

$$\frac{\partial}{\partial t}(u(x,0))=0$$

Equation of Ac, is

$$\frac{x-x_1}{x_1-x_2} = \frac{y-y_1}{y_1-y_2}$$

$$\frac{x-0}{0-4/2}=\frac{y-0}{0-h}$$



l

Equation of cg
$$\frac{x-x_2}{x_2-x_3} = \frac{y-y_2}{y_2-y_3}$$

$$\frac{x-a_2}{a_{12}-a} = \frac{y-h}{h-o} \Rightarrow \frac{x-a_{12}}{a_{12}-a} = \frac{y-h}{h}$$

$$\frac{2x-a}{a-2a} = \frac{y-h}{h}$$

$$\frac{2x-a}{a-2a} = \frac{y-h}{h}$$

$$\frac{2x-a}{a-2a} = \frac{y-h}{h}$$

$$\frac{2x-a}{a-2a} = \frac{y-h}{h}$$

$$\frac{x-a}{a-2a} = \frac{y-h}{h}$$

By the method of separation of variable general solution of eqn is is variable general solution of eqn is is $u(x,t)=(c,cospx+c_2sinpx)$ (400s qpt+c4sin upt)

Applying the boundary condition in eqn 6 we get two condition u $c_{1}=0, & P = \frac{n\pi}{L} = \frac{n\pi}{a} = (n=1, 2, 3...)$ Now substituting the above two conditions ean @ and applying the poinciple of superposition we get. a(x,t): An los nTC++ Bn sin nTC+] + Sinn Now we are going to apply of in a FOR that purpose fixst we have to take the partial derivative of egos ·w'. 8. to 't' applying & Now applying, the rendition Bn=0 male

 $u(x,t) = \sum_{n=1}^{\infty} An \cos \frac{n\pi c}{a} + \sum_{n=1}^{\infty} \frac{n\pi x}{a}$

Thitial conditions in egn 8

$$\frac{4h}{a} \left[\frac{x}{a} \left(\frac{\cos \frac{n\pi x}{a}}{a} + \frac{\sin \frac{n\pi x}{a}}{(n\pi/a)^2} \right)^{1/2} \right]$$

$$\left(\frac{-(a-x)f\cos\frac{n\pi x}{a}}{(n\pi a)} + \frac{(-1)}{(n\pi a)} + \frac{\sin\frac{n\pi x}{a}}{(n\pi a)^2} \right) dz$$

$$= \frac{4b}{a^{2}} \left[\frac{a}{2} \left(\frac{-a}{n\pi} \frac{\cos n\pi}{2} \right) + \frac{a^{2}}{6\pi^{2}} \frac{\sin n\pi}{2} \right] - \frac{a^{2}}{n^{2}\pi^{2}} \left[\frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a^{2}}{n^{2}\pi^{2}} \frac{\sin n\pi}{2} \right] - \frac{a^{2}}{n^{2}\pi^{2}} \left[\frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} \right] + \frac{a^{2}}{n^{2}\pi^{2}} \left[\frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} \right] + \frac{a^{2}}{n^{2}\pi^{2}} \left[\frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} + \frac{a}{n\pi} \right] + \frac{a^{2}}{n^{2}\pi^{2}} \left[\frac{a}{n\pi} + \frac{a}{n\pi}$$

$$=\frac{4h}{a^2}\left(\frac{2}{n^2H^2}Sin\frac{n\pi}{2}\right)$$

$$= 8h \frac{8h}{h^2 \pi^2} \frac{8m}{2}$$

$$\Rightarrow A_n = \begin{cases} \frac{9h}{n^{\frac{1}{4}}} & sin \frac{n\pi}{2} \\ 0 & n \text{ is even.} \end{cases}$$

and 'u is the dependent variable
Thun by substituting above partial
derivatives in eqn @ ove get

$$X''T = \frac{1}{h} * XT'$$

By dividing the above equ throughout
by x t and arranging e

LHS as a functions of x only a

RHS as a function of t only
& above get is facult if and only
if each side is equal to the same
constant k'

$$\frac{x^{u}}{x} = \frac{1}{h} \frac{T'}{T} = k - 2$$

From here we get two o.D. EG) such as,

$$\frac{x''}{x} = k - 2$$

$$k - \frac{1}{h} - \frac{1}{T} = k - 2$$

$$x''-kx=0$$
 3 $T'-khT=0$

As we discussed the wave equation the constant 'k' may have the following three possibilities.

(a) If
$$k=0$$
 $x''=0$.

 $T'=0$

AF $\lambda=0$, $\lambda=0$, 0
 $X=0,0$
 $X=(Cx+C_2)e^{4x}0x$
 $X=C_3e^{4x}$

(a) Here $u(x,t)=(C_1x+C_2)x$
 $x=C_1x+C_2$

(b) Here $u(x,t)=(C_1x+C_2)x$

(c) Here $u(x,t)=(C_1x+C_2)x$

(d) $x=C_3$

(e) Here $x=C_3$

(f) $x=C_3$

(g) $x=C_3$

this is not possible. physically viba $T' + hp^2T = 0$ mat 10 If k is negative Con i'e K = -B2 200 1 hp2 =0 x"+ p2x=0 x = - (hp4) wa AR => 12 + p2 =0 : (P. = T=C3 e - (hp3)t x2= - p2 90 ·CF) X = ± 1° p. con ten $X = (c_1 \cos px + c_2 \sin px)$ Z . The aerical solution. u(x,t) = (1, cospx + C2 sinpx) o (3€ Le E which shows that the temperature de decreases as t' increases which is of correspond to the physical nature The ir of this problem. : The 4.8 of the one dimensioned in 68 heat transfer egn is selected as u(x,t)=(c,cospx+c2stnpx) cze hp2t we compare the one demensional Heat Towns for equation with the

milling storny possiblers, one find.

And the head to another equation contain only a final demonstrative while the second demonstrative wave equation the second demonstrative wave equation the second demonstrative and this means that the head equation of the one incitial temperature only one incitial temperature conditions u(x,0) to determine the temperature u(x,0).

(is) A long insulated nod with ends at

Let us consider a long sed of length it which given initial temperature distribution along its axis & let the ends of the xod we kepted zo so temperature of the xod is the lateral surface of the xod is insulated which prevents the heat flow insulated which prevents and hence in the xadial direction and hence in the xadial direction and hence in the xadial direction is case the coordinate only. In this case the rootlem of the teat conduction is for solve. The heat transfer equation is to solve.

 $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \frac{\partial u}{\partial t} - \boxed{0}$ conder the boundary condition u(0,t) = 0 & u(1,t) = 0 for every u(0,t) = 0

and the initial condition is $u(\alpha,0) = F(\alpha)$ $\forall \alpha$ Note: The boundary conditions with zero and temperatures are known as Homogeneous boundary conditions 1 1 the temperature distribution Qus: on a rod of length 'L' whose end (1) Find points use fixed at temperature zen and the initial temperature destarbution is f(x)-The temperature distroitation dns. u(x,t) on a rod is given by the one dimensional heat egn L $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \times \frac{\partial u}{\partial x} \qquad \qquad \boxed{3}$ Here bile are considering the red of length'L' with the end points are fixed Su, one boundary conditions u (0,+) = 0 ~(2) u (L, t) = 0 -3 the netial temperature is fex). 18 th tréfial condition ((x,0)=f(x) - à

てて

using the method of separation of variable the solution of a is taken as $\alpha(x,t) = (c_1 \cos px + c_2 \sin px) c_3 e^{-hp^2t}$ Now we are applying the first boundary condition. i'e equal in equal. $0 = [c_1 \times 1 + c_2 \times 0] c_3 e^{-hp^2t}.$ Gre3 e-hp2+ =0 c, =0 & c3 e -hp2t +0 Now we are applying the above obtained condition, c,=0 in equ & $u(x,t) = c_2 \xi \sin p x r e^{-hp^2 t}$ $u(x,t) = c_2 \frac{1}{3} \sin px \times e^{-hp^2t}$ $u(x,t) = Bn \sin px \times e^{-hp^2t}$ Now we are applying the and boundary condition · ic eqn @ in eqn @ 0 = Bn sinpl xe hp2+ e-bp4 to SinpL=0 => sinpl = Sinna $pL = n\pi \Rightarrow P = \frac{n\pi}{1} n_{=1,1,3,-}$

or the length of the lod

Now Applying the above obtained condition $p = \frac{n\pi}{L}$ in = 1/2, 3 in equal and also explying the paraciple of superposition we get;

 $\alpha(x,t) = \sum_{n=1}^{\infty} B_n \sin \frac{n\pi x}{L} \cdot e^{-h \frac{n^2 u^2}{L^2}t}$

Now we are applying the initial temperature condition ie, the equal in the above equal

 $f(x) = \sum_{R=1}^{\infty} B_R \sin \frac{n\pi x}{L} \times e^{-h \frac{n^2 \pi^2}{L^2} xt}$

 $f(x) = \sum_{h=1}^{\infty} B_h S_{1h} \frac{h\pi x}{L} x_1$ ie, $f(x) = \sum_{h=1}^{\infty} B_h S_{1h} \frac{h\pi x}{L}$

ie, $f(x) = \sum_{n=1}^{\infty} Bn S'n NTK$ which iscleaely a Kalfrange humier Smeseres

i. $Bn = \frac{\partial}{\partial x} \int f(x) \cdot Sin NTX dx$

is given by the eqn of and In is given by the eqn. 8

A long insulated nod with ends at non-zero temperature.

If the end point of a rod of maintains at any non-zero temperature us, then we sedue there end temperature to zero by defining a new variable $u_1 = u - u_1$ so that $u_1 = 0$ at both ends we then find a solution for $u_1(x,t)$ where desired temperature $u_1(x,t)$ where desired temperature is given by.

|u(x,t)=u(x,t)|

The boundary condition with nonzero temperatures are called nonhomogeneous boundary condition

A long iron nod of tragth with insulated latteral sus fau has its insulated latteral sus fau has its sight temperature maintained at a right temperature maintained at 100°c. end of x=2, maintained at 100°c.

Determine the temperature as a funcof 'x' and 't'. It the initial temperature is $u(sc,0) = \{100 \text{ oc}, 0222\}$

Ans: Here, the initial temperature function is given.
e, Our initial condition is

$$u(x,0) = \begin{cases} 100 x, & 0 < x < 1 \\ 100, & 1 < x < 2 \end{cases}$$

Now, the Rod of length 2' is fixed af both tends and left side is having a temperature o'C and right side is having having a temperature 100°C. So, the boundary conditions are

$$u(0,t) = 0$$
 & (2)
 $u(L,t) = 0$ (Figure)
 $u(2,t) = 100$.

these boundary condition corresponding to the case k=0 in the desiration of solution of one dimensional heat solution. which gives

uld, 1) = (= + ca) c3 poundary conditions is u=0, when x=0u=100 when oc= 00 [where · u= temperature, · l= time]. D = (C, x0 + C2) Cg = (C, x2 + C2) Cg 10 (2 C3 = 0) A : 2 C1 C3 + C2 C3 = 100 To bon (B) apply equal $QC_1C_3 + 0 = 100$ $2C_1C_3 = 100$ 1 (10g = 50 Substituting these two condition in the above equation octobe u(x,t) = (c,x+c2) (3 ", 6 263=0 u(x,1) = 50x. which shows that the temperature to Independent of time ie, we take U1(1) = 50 x - (3) Now, the temperature distribution in the and is given by me solution the one doman sional heat transfer equation,

 $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \frac{\partial u}{\partial t} \quad \text{and so this figured}$ the initial condition 1, and boundary condition a unlike the general case. (previous problem).

The boundary conditions ou non- 2000 home So, the required solution is given by

 $u(x,t) = u_x(x) + u_z(xt) - \Phi$

where $u_1 \propto is$ the solution of the one dimensional head equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \times \frac{\partial u}{\partial t}$ involving 'a' only and satisfying the boundary condition a uz (x, t) is the transient nature of temperature as 'u' de coreages when 't' increases. The eqn @ is obtained by superimposing a, (x) & u2 (x, t)

 $u_2(x,t) = u(x,t) - u_1(x) - u_2(x,t) = u_1(x,t) - u_2(x,t) = u_$ Now we we putting see x=0 in the above eqn (5)

 $U_2(0,t) = U(0,t) - U_1(0)$ (by condition-2) aby condition-3 w 11.10.t) = 0 -0

) 12 (0,1) = 0 - 6 putting x=a, in eqn 6 u2(2,t) = u(a,t) - u1(a). -, U2 (a,t) = 100 - 100 =) U, [a,t] = 0 - 9 Now we are putting to in eqn(5) [egn 1, egn 3] $u_2(x,0) = u(x,0) - u_1(x)$ (+00, K: U2(x,0) = y((100x-5.0x), 02x21 (100-50x) 12x22 where equation 6 & A are our kero boundary conditions & egn & 15 our inetial temperature distribution. This give, the initial temperature distribution uz (x,t). Now we can u2 (x,+) = (c, cospor + c2 sinpor) c3 e Now using the kero boundary runditions ie egn @ & @ in egn @), we get, the two condition [C, =0 P = n 17 when (n = 1, 2, 3) P=nm

in the above equal we get, & using the poinciple of superposition we get $U_{2}(x,t) = \frac{2}{2} B_{n} S_{ln} \frac{n \pi x}{L} e^{-h p \cdot n^{2} \pi^{2} 6}$ Now we are applying, the initial conditions in equ (0) U2(x,0) = (100x - 50x), ocxc1 ((100-507) 12×22 = & By Sin netx x1 = E Bn Sinny - I bleasty this is a fourier half range sine series $B_n = 2 \int f(x) \sin \frac{n\pi x}{x} dx$ $=\frac{2}{2}\int \Omega_{2}(x,0)\cdot 8/n \frac{n\pi x}{3}$ = [[(1002-50x) sin mx dx + [(100-50x) fin nxxdx 250 [Sa sin nax da + [(2-x) sin nax da]

Here the transpent nature of temperature is given by eqn (1) where
$$\frac{1}{n}$$
 $\frac{1}{n}$ $\frac{1}{n}$

Here the transment nature of temperature is given by eqn @ where Bn is given by @ Now, the demperature distribution function Now, the demperature distribution function of u(x,t) is given by the eqn @ thon is, by substituting the eqn @ is by eqn @ in

 $u_2(x,t) = \sum_{n=1}^{\infty} \frac{400}{n^2 \Pi^2} \frac{\sin n\pi}{2} \sin n\pi x e^{-h \frac{n^2 \Pi^2}{2}t}$

: The temperature distribution function $u(x,t) = u_1(x) + u_2(x,t)$

The end A and B of the rod of length's 23/2/16 (2) aie maintained at temperatures took o'c & 100°c sespectively. Untill the steady
state conditions or wasse. Suddenly to Emperature at the ond A, increased to 20°c & temperature at the end'p' is decrease. to 60°c. Find the temperature distribution in the at time 't'. The temperature distribution u(x,t) Ans: of the one dimensional heat equation is $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \frac{\partial u}{\partial t} - \frac{1}{h}$ In the steady state the treat flow is independent In the steam of time for which $\frac{\partial u}{\partial t} = 0$ Then the egn Doreduces to & 12 = 0 D4U)=0 λ2 = 0 $\lambda = 0,0$ where C= A, C2=B (C, x+C2)e° => u = 4 x +B -2

Now we are going to find the initial

temperature u(x, 0) by applying the first set

```
mundary condition re
u=0. when x=0 &
  112100 when pc = L
 we get, .
 u=0, when x=0 u=100, when x=L
  0 = AXO+B.
 \Rightarrow | \cdot \cdot B = 0 |
        AxL +0= (00.
 Using these & conditions in the above eque
  u = 100 x + 0.
                     11 11 11 11 11
\Rightarrow U = \frac{100}{1}
 te, u(20) = 100 x. where t=0
    u(x,0) = 100 \times 3 it is the
 initial temporature distribution
suddenly the boundary condition are
changed ice
   il(0, t)=20, & u(L, t)=60 - 4
Here the boundary conditions are
non-zero. Hence (proceeding as in the
previous case)
u(x,t) = u,(x)+ u2(x,t) -8
where u, (x) is the steady steady
temperature distribution. ie,
```

(independent of time) & U2(x,t) is the transient nature of temperature where it degrees with increase of time. ie, u2(x,t) is the solution of eqn @ & is given by u_(x,t)= U2(x,t)= (c1(0spx+c2 sin px) c3e-hp2t How to determine the u, (sc) as follows. In the steady state we have, $U_1 = A_1 x + B_1$ $e'e_{r}$ $u_{r}(\infty) = A_{1}\infty + B_{1}$ Now we are applying the and boundary condition. ce, a=20, when x=0 & u=60, when 20 = L u=20, when x 20 Uz60, when 221 BU = A, XL + B, 20 = B1 B1=20 A1xL # 20=60 : Bj=20 A1 = 40

substituting the above two conditions

Now we are going to find
$$u_1(x)$$
.

Now we are going to find $u_1(x)$.

I wo eqn (a) We have

 $u_1(x,t) = u(x,t) - u_1(x)$

Now we are putting $x = 0$, in eqn (a)

 $u_1(0,t) = u(0,t) - u_1(0)$
 $u_1(0,t) = 0$ (from eqn (a)

 $u_2(0,t) = 0$ (from eqn (a)

 $u_2(x,t) = u(1,t) - u_1(1)$
 $u_2(x,t) = u(1,t) - u_1(t)$
 $u_2(x,t) = u(1,t)$
 $u_2(x$

in ean 6 and also applying the principle of superposition are get u2(x,t) = & Bn Sin nTx e-hn27 t Now we are applying the initial condition ~ 1 in eqn (2) U2(00,0) = 60 x -20 = 5 Bn 9n 111x x1 = E Bn Sin MTX which is eleasly a bunder binesonies Where Bn is given by Bn, a f fcx). Sin nua de $= \frac{d}{L} \int u_2(x,0) \, sin\left(\frac{n\pi x}{L}\right) dne$ = de [(60x - 20) Sin nt x dx = a [60 x - 20 (-L wsnTx) - (60) (-L2 SinnTx) = 2 -40 L (OS NT - (L-QO)) $=\frac{-40}{n\pi}\left[2\cos n\pi + 1\right]$ = -40 [1+2(-1)n]

in the eqn (become)

$$u_{1}(x,t) = \sum_{n=1}^{\infty} v - \frac{4}{n!} \left(\frac{1+2(-1)^{n}}{n!} \right) \frac{\sin n\pi x}{L} e^{-\frac{1}{n} \frac{2}{n^{2}} t} + \frac{4}{n!} \left(\frac{1+2(-1)^{n}}{n!} \right) \frac{\sin (n\pi x)}{L} e^{-\frac{1}{n} \frac{2}{n^{2}} t} + \frac{40}{n!} \sum_{i=1}^{\infty} \left(\frac{1+2(-1)^{n}}{n!} \right) \frac{\sin (n\pi x)}{L} e^{-\frac{1}{n} \frac{2}{n^{2}} t} + \frac{40}{n!} \sum_{i=1}^{\infty} \frac{1+2(-1)^{n}}{n!} \frac{\sin (n\pi x)}{L} = \frac{1}{n!} \frac{\sin (n\pi x)}{L} = \frac{1}{n!} \frac{\sin (n\pi x)}{n!} = \frac{1}{n!} \frac{\sin (n\pi$$

MPORTAN QUS

9 If the solution of one dimensional heat flow equation depends on the fourier cosine series, what would have been the nature of the end condition.

heat flow equation depends on the fourier rosine series i'f the two end points are insulated or the left end point is ensulated and the sight end point is hepted zero temperature. and the right end es the sight end the sight e

29 In the stated state condition derive the solution of one dimensional heal equa?

this the one dimensional head ear is

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \frac{\partial u}{\partial F}$$

In the steady state the above egn is independent of time. i'e,

 $\frac{du}{dt} = 0$

then the egn @ become d2u =0

Since at this moment there is only one independent variable case l'e tre PDE changed to ODE. te

$$\frac{\partial^2 a}{\partial x^2} = 0$$

SF => D2 4 = 6

AE > 12 = 6. COM $\lambda = 0,0$

LY U= AX +B

=> u(x) = Ax+B
Insulated =>
means

There is not heat from in that point

temperature at one end of a bar of length soom is kepted one side at zero occ and other side at 100°C, with the sides are insulated. Until the steady state condition prevails the hus ends state condition prevails the hus ends are end then suddenly insulated. Find the remperature distribution function?

The temperature distribution of a a dimensional heat transfer equation

 $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \frac{\partial u}{\partial t} - \boxed{1}$

For solving a one dimonsional heat transfer ean two boundary condition transfer ean two boundary condition to one initial condition is problem, there is no initial condition is given but there is a hint is given i.e. given but there is a hint is given i.e. Untill the steady state condition prevails.

Since, the Rod is given a steady steak condition. etc, the temperature distribution function is independent of time, I'e are get, u = Ax + B.

 $u(x) = A x + B, \qquad \boxed{2}$

for finding the initial temperatures
condition now we are applying the initial
boundary condition.

u=100 when x=50. U=0, when x=0 O= AxO+B 100 =50A + B. B20.=> 100 = 50 A. -> B = 0/ A = aNow applying the above obtained two condition in eqn. (2) U(x)= 2x+0. u(x) = 2x. Where, t=0) Kase: The mitial temperature function (condition) a(01,0) = 2x Suddenly the both ends are insulated ie There is no heat flow at both ends of the temperature gradient of the heat this U=0°C is zero at both ends. u=o°c 06-50 AND THE BUILDING Then the boundary conditions are $\frac{\partial u(o,t) = 0}{\partial a}$ dx (50, t) =0 - € ie the acneed solution of the eqn (1) be comes

11(51, t)= (C1 cospx + (2 Sinpx) c3e-hp2+ 6) we are going to apply the eqn (D&G) For that first we are differentiating the egn @ partially w.r. to or.) x ((x,t) = P c3 e-b/22t [-c, sinpx+(260spx] Now we are applying the boundary con dition (1) in equal. (20) 0= PC3eter [-C1X0+ C2X1] $-10^{10} p_{2}^{2} c_{3} e^{-hp^{2}t} = 0$ Again we are applying the boundary condition & in egn 7. 0 = pc3e [-c, sin sop + @ cos sop] (x250) => PC - PC, C3 Sin 50pe-hp2t. = 0. => Sin sop = 0. re, sinsop = sin nit 50p=nf => |p=n# [because 120, 1, 2 both sides insul

New we are substituting the above obtained & $P = \frac{n\pi}{50}$, $n = 1, 2 \dots$ two condition. 1º (2=0 in equation 6 , we get. $u(x,t) = \left[c_1 \cos \frac{n\pi}{50} x_4 + o x \sin \frac{n\pi}{50} x_5 \right] c_3 e^{-\frac{h^2 k^2}{2500}}$ $u(x, t) = C_1 C_3 \cos \frac{n\pi}{50} x = e^{-h\frac{n^2\pi^2}{2500}} t.$ and also, applying principle of supres $u(x,1) = \sum_{n=0}^{\infty} A_n \cos \frac{n\pi x}{50}, e^{-h\frac{n^2\pi^2}{2500}} t$ position we get; where An=C1C3 Now we are applying the initial condition (3 ie, u(x,0) = 2x in the eqn (4x,0) = (4x,0) in (4x,Ni(x,0)=2x= An (us n) 2 x1 $\partial x = 40 + \sum_{n=1}^{\infty} A_n \cos \frac{n \pi x}{50}$ 89, The above eqn. But be rearranged as ax= A0 + E An los nota

Then,
$$A_{1} = A_{2} = \frac{1}{2} \int_{0}^{1} f(x) dx$$
,

$$= \frac{1}{50} \int_{0}^{50} x dx$$

$$= \frac{1}{50} \left(\frac{x^{2}}{2} \right)_{0}^{50}$$

$$= \frac{2}{35} \left(\frac{x^{2}}{25} \right)_{0}^{50} \left(\frac{x^{2}}{25} \right)_{0}^{50}$$

$$= \frac{2}{35} \left(\frac{502}{102} \right)_{0}^{50} \left(\frac{502}{102} \right)_{0}^{50} \left(\frac{502}{102} \right)_{0}^{50}$$

$$= \frac{2}{35} \left(\frac{502}{102} \right)_{0}^{50} \left(\frac{502}{102} \right)_{0}^{50}$$

$$= \frac{2}{35} \left(\frac{502}{102} \right)_{0}^{50} \left(\frac{502}{102} \right)_{0}^{50}$$

$$= \frac{2}{35} \left(\frac{502}{102} \right)_{0}^{50} \left(\frac{502}{102} \right)_{0}^{50}$$

$$= \frac{2 \times 56^2}{25 \times 0^2 \text{ y}^2} \quad [(-1)^n - 1]$$

$$=\frac{200}{n^2 \pi^2} \left[(-1)^n - 1 \right]$$

$$An = \begin{cases} \frac{-400}{n^2 + 2}, & \text{n is odd} \\ 0, & \text{n is even}, \end{cases}$$

$$u(n,t) = 50 - \frac{400}{60^{2}\pi^{2}} + \frac{8}{n^{2}} = \frac{1}{(n-1)^{2}} = \frac{(0.5(2n-1))\pi}{50}$$

$$-h \frac{(2n-1)^{2} \pi^{2}}{a 500} = \frac{1}{x} = \frac{1}{(n-1)^{2}} = \frac{1}$$

(a) Find the temperature destribution in a bar of length IT whose surface is theomally insulated with end points maintain at 0°c The initial temperature distribution in the Rod is given by $u(x,0) = \begin{cases} x, & 0 \le x \le T/2 \\ T-x, & T/2 \le x \le TT \end{cases}$

The temperat d'stit bution fante a

u- ő

abject to the boundary condition a (o, t) =0 - (3) the given initial temperar andition, By using the method of separation of variable The solution of equal is Theogeneral solution a (oi, t) = (cicospot + cz sinpox) cze -hp2t. now we are applying the given boundary condition as & 3 in the general solution (5) we get. $C_{1=0}$ $p = \frac{n\pi}{L} = \frac{n\pi}{\pi} = n \left[n = \frac{n\pi}{2!} \right]$ Now substituting theubore a conditions to en U(x,t) = [oxcospnx+ & sin nx] c3 e -hn2t. u(x,t)= c2c3sin nx e-hn2t (n=0,1,1.) & also applying the principle of superposition u(x,t)= & Bn sin nx e-hn2t_ 1721 where c2C3 = BD you we are applying the initial condition 4 in eqn 6 H=0) $U(x,0) = \begin{cases} x, & 0 \le x \le \frac{\pi}{2} = \sum_{n=1}^{\infty} B_n \sin nx \times 1 \\ t = x, & T_2 \le x \le \frac{\pi}{2} = \sum_{n=1}^{\infty} B_n \sin nx \times 1 \end{cases}$ chaely this is factier half range the series

where
$$B_n = \frac{1}{L} \int f(x) \cdot Sin \frac{n\pi x}{n} dx$$
.

 $B_n : \frac{Q}{H} \int u_1(x,0) \cdot Sin \frac{n\pi x}{n} dx$.

 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin \frac{n\pi x}{n} dx + \int (\pi - x) \cdot Soin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Soin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Soin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Soin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Soin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Soin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx + \int (\pi - x) \cdot Sin nx dx$
 $= \frac{Q}{H} \int u_2(x,0) \cdot Sin nx dx$
 $= \frac{Q}{H}$

(3) find the temperature Mishibution Function of a ked of length IT which is totally insulated including the Til and the initial temporature distributions is 100 cos sc.

asober irrelated in the temperature destition 000 function ulsi,t) of wave transfer egn is given by $\frac{\partial^2 \mathcal{U}}{\partial x^2} = \frac{1}{h} \frac{\partial \mathcal{U}}{\partial x}$ both ends of the rod are thornally insulated. .. The boundary conditions are 2 4 u(o,t) =0 doc u(17, t) =0 and the initial temperature condition 13 u(x,0) = 100 (05)c. -Then by the method of separation of the physically acceptable variable solution U(o1,1)= (C100px+c25inpx) Cze -hp2t Now us are going to apply the boundary condition (2) & (3) in eqn (5). For that first we are differentiating the eqn (5) partial with respect to x. u(x,+)= p(3e-hp2+ [- (15inpx+ (210spx)-6 Now we are applying the boundary and non 2 in ego

plso applying the initial condition of in egod 11(05,0) = 100 cos x = 20 An Cosni & shipert. 1) 100 COSX = E An Cos nx. this gives 1 = 100 when n=1 & all other 100. Hence from Egn () the required Solution uest, t)= 100 cos x e-ht one temperature at one end of a bar of length 'l' cm. with insulated sides is kepted oc. & other is topled 100°C. Until the steady state conditions prevails. The two ends are then suddenly insulated. Find the temperature distribution in the bar.o The femper ature distribution. u (or, +) of or one dimensional heat transfertegn is given by $\frac{\partial^2 u}{\partial x^2} = \frac{1}{h} \frac{\partial u}{\partial t}$ since, the Rod is in the steady state. we have set to U=A E+B u(x) = Ax + B -Now here we are applying the initial

boundary condition 000 Xol d. D Uso who ox =0 U= 100 when x=4 O = Axof B 100=AXL+B > B = 0 B=0 100 = AXE Then we are applying the above obtained two condition: 1'c, B=0 & A = 100 in eqn 2 The initial condition at u(36) 100 x + 0 Cr (000)=100 X This eqn is independent of t. $u(x,0) = \frac{100}{1} x.$ suddenly the two ends are insulated. ie, the boundary conditions beames. d u(o, t) = 0 - 4 d a(4, t) = 0.

how by the method of separation of variable the general solution of a heat transfer egn. ie here egn @ $u(x,t) = (c_1 \cos px + e_2 \sin px) e_3 e_5$ la cornes Now we are going to apply the 2000 boundary condition egn & & in egn (6) "For that first we are differentiating the eqn. @ pachally w. r. to a. $\frac{\partial}{\partial x}u(x,t) = pc_3 e^{-bp^2t}(-c, sinpx) + c_2 \cos px$ Now we are applying the first. P & 6 in equal. we get, [c2 =0] & [P= nt], m =0,12. Sub chituling These two values in eqn @ and also including me jornable of puperpostion wegt ulx,t) = 5 An cos nTX e-h n272t. $u(x,t) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} = h \frac{n^{2\pi x}}{L^2} + \sum_{n=1}^{\infty} \frac{1}{n^2} = h \frac{n^{2\pi x}}{L^2} + \frac{1}{n^2}$

Finally we are applying our initial condition in eqn @ u (2,0)= 100 21 - 3. $\frac{100}{L}x = A_0 + \frac{20}{L} A_0 \cos \frac{n\pi x}{L}$ 8 x1 wish [This of the form an + 2 an cosnx] And Charly this a fourness cosine sonies Ao = = fex) dx. $= \frac{1}{L} \int_{-L}^{L} \frac{100}{L} \times dx.$ $= \frac{100}{L\times L} \left(\frac{\chi^2}{2}\right)^{L}$ $=\frac{100}{1.2}\frac{L^2}{2}$ = 50 An= 2 f fex) ws nite dx. $= \frac{2}{L} \int \frac{1}{L} \cos \alpha x \cdot \cos n \pi x dx$ $= \frac{\partial}{\partial x} \log \left[x \cdot Sin \frac{n\pi x}{L} \right] \cdot - \left[1 \times - \cos n\pi x \right]^{L}$

12 m2 112 11 2000 800 X(X)". = 200 (-1) = 1 N2 11/2 = 1 N2 11/2) 200 ((-1)n-1) f-400, n is odd Hurry From eqn @ the G.S of the orad is given by ean T

u(ol, f) = 50+ 200 \(\xi\) \(\frac{\x}{\pi_2}\) \(\frac{\x}{\nu_2}\) \(\frac{\x}{\nu_2}\) \(\frac{\x}{\nu_2}\)